期刊文献+

(k,q)阶分数差分方程的一个新解法

New Method of Solving Fractional Difference Equation of Order(k,q)
下载PDF
导出
摘要 通过构造特殊函数Λ(-μ,λ),利用待定系数法,给出(k,q)阶分数差分方程的一个新解法。 This paper is concerned with the fractional difference equation of order( k,q). With constructing a special function Λ(- μ,λ),the expression of solution is obtained by the method of undetermined coefficients,which is a new method to solve the equation.
出处 《安庆师范学院学报(自然科学版)》 2016年第1期1-3,共3页 Journal of Anqing Teachers College(Natural Science Edition)
基金 国家自然科学基金(10771001) 高等学校博士点基金(20113401110001) 安徽省自然科学基金(1308085MA01 1508085QA01)
关键词 分数阶差分 分数阶和分 (k q)阶分数差分方程 fractional difference fractional summation fractional difference equation of order(k q)
  • 相关文献

参考文献9

  • 1郑祖庥.分数微分方程的发展和应用[J].徐州师范大学学报(自然科学版),2008,26(2):1-10. 被引量:49
  • 2F. Mainardi, R. Gorenflo. On mittag - leffler - type functions in fractional evolution processes [ J ]. J. Comput. Appl. Math. , 2000, 118:283 -299.
  • 3V. Dartardar - Gejji, A. Babakhani. Analysis of a system of fractional differential equations [ J ]. J. Math. Anal. Appl. , 2004, 293 : 511 -522.
  • 4K. Diethelm, N. J. Ford. Multi- order fractional differential e- quations and their numerical solution [ J ]. Appl. Math. Comput. , 2004,154:621 - 640.
  • 5K. S. Miller, B. Ross. An Introduction to the Fractional Calcu- lus and Fractional Differential Equations [ M ]. New York : John Wiley and Sons, 1993.
  • 6I. Podlubny. Fractional Differential Equations[ M ]. San Diego: Acad Press, 1999.
  • 7A. A. Kilbas, H. M. Sfivastava, J. J. Trujillo. Theory and Applications of Fractional Differential Equations [ M ]. Amster- dam: Elsevier Science Ltd. , 2006.
  • 8程金发,吴国春.(2,q)阶分数差分方程的解[J].数学学报(中文版),2012,55(3):469-480. 被引量:4
  • 9程金发.分数(k,q)阶差分方程的解[J].应用数学学报,2011,34(2):313-330. 被引量:9

二级参考文献71

  • 1徐明瑜,谭文长.中间过程、临界现象——分数阶算子理论、方法、进展及其在现代力学中的应用[J].中国科学(G辑),2006,36(3):225-238. 被引量:34
  • 2Hale J K. Ordinary Differential Equations. New York: Wiley, 1969.
  • 3Hartman P. Ordinary Differential Equations. Second Edition. Boston-Basel-Stuttgaxt: Birkhauser, 1982.
  • 4Agarwal R P. Difference Equations and Inequalities. Marcel Dekker, Inc., Newyork, 1992.
  • 5Samko S G, Kilbas A A, Maritchev O I. Integrals and Derivatives of the Fractional order and Some of their Applications. Minsk: Naukai Tekhnika, 1987.
  • 6Miller K S, Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York: John Wiley and Sons, 1993.
  • 7Podlubny I. Fractional Differential Equations. San Diego: Acad Press, 1999.
  • 8Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies,204,Elsevier, 2006.
  • 9Mainardi F, Gorenflo R. On Mittag-Leffler-type functions in fractional evolution processes. J. Cornput. Appl. Math., 2000, 118: 283-299.
  • 10Diethelm K, Ford N J. Multi-order Fractional Differential Equations and their Numerical Solution. Appl. Math. Comput., 2004, 154:621-640.

共引文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部