摘要
K-均值聚类算法是聚类算法中比较典型的算法之一,在其各类改进算法中都受到了离群点、初质心、类个数等因素的干扰。本文利用相似密度提出一种新的聚类初始质心选取和离群点判别方法,对K-均值聚类算法进行了改进。通过实验证明改进算法提高了聚类的有效性和稳定性。
K-means is one of typical clustering algorithm,but it is easily affected by the outliers,the initial cluster center of mass,and the given cluster number and so on. In this paper,the method of similar density is used to determine the initial cluster center of mass,then to remove outliers through the outlier determine rules. Furthermore,we make an improvement on K-means clustering algorithm and improve effectiveness and stability of the clustering result by the experiment.
出处
《安庆师范学院学报(自然科学版)》
2016年第1期40-42,共3页
Journal of Anqing Teachers College(Natural Science Edition)
关键词
K-均值聚类
聚类算法
相似密度
离群点
K-means clustering
clustering algorithm
isolated point
similar density