期刊文献+

深过冷Al_(46.2)Fe_(36.6)Ti_(17.2)包共晶合金的快速凝固及组织演变 被引量:1

Rapid Solidification and Microstructure Evolution of Undercooled Al_(46.2)Fe_(36.6)Ti_(17.2) Quasiperitectic Alloy
下载PDF
导出
摘要 采用落管无容器处理技术实现了Al_(46.2)Fe_(36.6)Ti_(17.2)三元包共晶合金的深过冷与快速凝固,获得直径为130~1 150μm的合金粒子,其过冷度范围为202~30 K。研究发现,在自由落体条件下,合金熔体在快速凝固过程中呈现显著的溶质截留效应,包共晶转变进行得不彻底,凝固组织中包含Fe_2Ti相、Fe Al相和τ_2相,其中Fe_2Ti相为初生相,组织呈现枝晶形貌,Fe Al相和τ_2相形成层片状包共晶组织。随着液滴直径的减小,冷却速率增加,过冷度增大,凝固组织中初生Fe_2Ti相的形貌由粗大枝晶逐渐变为细碎枝晶,一次枝晶轴长度与粒子直径呈线性减小关系;包共晶组织由长条状层片变为球状胞,并且层片间距呈指数型减小。 U ndercooled Al_(46.2)Fe_(36.6)Ti_(17.2)quasiperitectic alloy was rapidly solidified in the form of 130~1150 μm diameter droplets inside drop tube, and the maximum undercooling of 202 K(0.14 TL) was achieved. The rapid solidification route is characterized by the primary growth of Fe_2 Ti and the following quasiperitectic transformation of L+Fe_2Ti→Fe Al+τ_2. The solidification microstructure contains Fe_2 Ti, Fe Al and τ_2phases. The primary Fe_2 Ti phase solidify into dendrite morphology,while Fe Al and τ_2phases grow into lamellar structure. As droplet diameter decreases, the primary Fe_2 Ti phase transforms from course into fine dendrites, whose average size decreases linearly. Meanwhile, the lamellar spacing of(Fe Al+τ_2)quasiperitectic structure reduces exponentially with the decrease of the droplet diameter.
出处 《铸造技术》 CAS 北大核心 2016年第3期476-480,共5页 Foundry Technology
基金 国家自然科学基金资助项目(51171153 51201136)
关键词 快速凝固 落管 包共晶 组织演变 rapid solidification drop tube quasiperitectic microstructure evolution
  • 相关文献

参考文献18

  • 1Asta M,Beckermann C,Karma A,et al.Solidification microstructures and solid-state parallels:Recent developments,future directions[J].Acta Materialia,2009,57(4):941-971.
  • 2Chang J,Wang H P,Zhou K,et al.Rapid dendritic growth and solute trapping within undercooled ternary Ni-5%Cu-5%Mo alloy[J].Applied Physics A,2012,109(1):139-143.
  • 3Jiao W,Xi X K,Zhao D Q,et al.Fabrication of bulk metallic glasses at the region of multiple quasi-peritectic Reactions[J].Intermetallics,2011,19(4):586-588.
  • 4Wu P H,Liu N,Yang W,et al.Microstructure and solidification behavior of multicomponent Co Cr CuxFe Mo Ni high-entropy alloys[J].Materials Science&Engineering A,2015,642:142-149.
  • 5Shankar Rao V.Fe3Al-Fe3Al C intermetallics for high temperature applications:An assessment[J].Journal of Materials Science,2004,39(13):4193-4198.
  • 6Krein R,Palm M,Heilmaier M.Characterization of microstructures,mechanical properties,and oxidation behavior of coherent A2+L21Fe-Al-Ti[J].Journal of Materials Research,2009,24(11):3412-3421.
  • 7Siqueira RP,Sandim HRZ,Hayama AOF,et al.Microstructural evolution during sintering of the blended elemental Ti-5Al-2.5Fe alloy[J].Journal of Alloys and Compounds,2009,476(1-2):130-137.
  • 8Su C W,Jeng S C,Chao C G,et al.Orientation relationship between C14 precipitate and(A2+D03)matrix in an Fe-20at.%Al-8at.%Ti alloy[J].Scripta Materialia,2007,57(2):125-127.
  • 9Koike J,Shimoyama Y,Ohnuma I,et al.Stress-induced phase transformation during superplastic deformation in two-phase Ti-Al-Fe alloy[J].Acta Materialia,2000,48(9):2059-2069.
  • 10Zhu S M,Iwasaki K.Characterization of mechanically alloyed ternary Fe-Ti-Al powders[J].Materials Science and Engineering A,1999,270:170-177.

二级参考文献37

  • 1阮莹,王楠,曹崇德,魏炳波.落管中Ag_(60)Sb_(34)Cu_6三元合金的快速凝固机制[J].科学通报,2004,49(18):1830-1834. 被引量:5
  • 2代富平,曹崇德,魏炳波.Ni-5%Sn合金熔体的热物理性质[J].中国科学(G辑),2005,35(5):482-491. 被引量:6
  • 3Ghosh S K, Grover A K, Chowdhury P, et al. High magnetoresistance and low coercivity in electrodeposited Co/Cu granular multilayers. Appl Phys Lett, 2006, 89:132507--132509
  • 4Prabhakar A. Current induced bistability in giant magnetoresistive multilayer thin films. J Appl Phys, 2006, 99: 08S306-- 08S309
  • 5Miranda M G M, Estevez-Rams E, Martfnez G, et al. Phase separation in Cu90Co10 high-magnetoresistance materials. Phys Rev B, 2003, 68:014434--014442
  • 6Rubinstein M, Harris V G, Das B N, et al. Magnetic properties of Cu80Co20 and Cu80Co15Fe5 melt-spun ribbons. Phys Rev B, 1994, 50:12550---12558
  • 7Nakagawa Y. Liquid immiscibility in copper-iron and copper-cobalt systems in the supercooled state. Acta Metall, 1958, 6(11): 704--711
  • 8Peter F L, Joseph H B, David J L, et al. Intermixing and phase separation at the atomic scale in Co-rich (Co,Fe) and Cu multilayered nanostructures. Appl Phys Lett, 2005, 87:121912--121913
  • 9Munitz A, Abbaschian R. Liquid separation in Cu-Co and Cu-Co-Fe alloys solidified at high cooling rates. J Mater Sci, 1998, 33:3639--3649
  • 10Kim D I, Abbaschian R. The metastable liquid miscibility gap in Cu-Co-Fe alloys. J Phase Equilibia, 2000, 21 (1): 25--31

共引文献13

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部