期刊文献+

切比雪夫多项式零点插值与非线性方程求根 被引量:4

Solving Nonlinear Equation by Interpolation Based on Zero Point of Chebyshev Polynomial
下载PDF
导出
摘要 基于切比雪夫正交多项式零点插值误差的极小化性质,提出了非线性方程求根的一种新方法.在此基础上建立迭代算法,进行误差估计,并通过数值试验对所建算法与弦截法、抛物线法进行收敛速度和精度的比较. This paper proposes a new method for solving nonlinear equations by using minimization properties of interpolation error based on zero point of Chebyshev orthogonal polynomial.Based on this,a iteration algorithm is established and the error estimate is made.Then,by numerical experiments,the convergence speed and accuracy are compared between the proposed algorithm,the secant method and parabola method.
作者 徐晓芳 蔡静
出处 《湖州师范学院学报》 2016年第2期1-5,共5页 Journal of Huzhou University
基金 国家自然科学基金(61473332)
关键词 切比雪夫多项式 插值 非线性方程 误差估计 数值试验 Chebyshev polynomial interpolation nonlinear equation error estimate numerical experiment
  • 相关文献

参考文献8

二级参考文献20

共引文献24

同被引文献26

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部