期刊文献+

基于卷积树核的事件论元角色抽取方法 被引量:1

Argument Extraction Algorithm Based on Convolution Tree Kernel
下载PDF
导出
摘要 事件论元角色抽取是事件抽取的关键环节,句法分析信息对事件论元角色抽取具有重要作用.传统基于机器学习的方法通常将句法分析信息转化为平面特征,并不能全面利用句法分析信息.为此,提出基于卷积树核的事件论元角色抽取方法.首先,构造基本树结构,将句法分析信息转化为结构特征;其次,针对句法结构树包含较多冗余信息的问题,设计相应裁剪算法,优化树结构、减少卷积树核计算的时间复杂度;最后,构造复合核将平面特征与结构特征相结合,并训练支持向量机分类器完成事件论元角色抽取.实验证明,本文方法使事件论元角色抽取效果有了明显提升. Argument extraction is the key step of event extraction,syntactic information has an important role in argument extraction.Traditional argument extraction algorithms based on machine learning usually changed the syntactic information into plane features and didn't make full use of syntactic information.To solve this problem,this paper proposed an extraction method based on convolution tree kernel.First,this paper constructed the basic structure of the tree to change the syntactic information into structured features;Secondly,since the syntactic trees contained much redundant information,this paper proposed an clipping algorithm to optimize the tree structure and reduce the computing time of convolution tree kernel;Finally,by constructing a compound kernel which combined the plane features and the structured features and training a SVM classifier,this paper completed the event argument extraction.Experimental results showthat this method makes the effect of event argument extraction improving significantly.
出处 《小型微型计算机系统》 CSCD 北大核心 2016年第4期722-725,共4页 Journal of Chinese Computer Systems
基金 国家社会科学基金项目(14BXW028)资助
关键词 事件抽取 事件论元角色 核函数 卷积树核 event extraction event argument role kernel function convolution tree kernel
  • 相关文献

参考文献1

二级参考文献9

  • 1Naomi Daniel,Dragomir Radev and Timothy Allison.Sub-event based Multi-document Summarization[A].In:Proceedings of the HLT-NAACL Workshop on Text Summarization[C].2003.9-16.
  • 2Elena Filatova and Vasileios Hatzivassiloglou.Event-based Extractive summarization[A].In:Proceedings of ACL Workshop on Summarization[C]].2004.104-111.
  • 3Wenjie Li,Mingli Wu and Qin Lu.Extractive Summarization using Inter-and Intra-Event Relevance[A].In:Proceedings of the 44th Annual Meeting of the Association for Computational Liguistics[C].2006.369-376.
  • 4David Ahn.The stages of event extraction[A].In:Proceedings of the Workshop on Annotations and Reasoning about Time and Events[C].2006.1-8.
  • 5ACE (Automatic Content Extraction) Chinese Annotation Guidelines for Events.National Institute of Standards and Technology[R].2005.
  • 6Mihai Surdeanu,Sanda Harabagiu,John Williams,et al.Using Predicate-Argument Structures for Information Extraction[A].In:Proceedings of ACL[C].2003.8-15.
  • 7Mihai Surdeanu and Sanda Harabagiu.Infrastructure for Open-Domain Information Extraction[A].In:Proceedings of the Human Language Technology Conference[C].2002.325-330.
  • 8Hai Leong Chieu,Hwee Tou Ng.A Maximum Entropy Approach to Information Extraction from SemiStructured and Free Text[A].In:Proceedings of the 18th National Conference on Artificial Intelligence[C].2002.786-791.
  • 9来自ACE标准标注结果,分别对应着ACE的三项标注任务:实体识别、时间表达式识别和属性词识别.

共引文献105

同被引文献7

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部