期刊文献+

离散时间的时滞反应扩散方程组的行波解(英文)

Traveling wave fronts in temporally discrete reaction-diffusion systems with delays
下载PDF
导出
摘要 考虑了一类抽象的离散时间反应扩散方程组的行波解的存在性.通过Schauder's不动点理论和比较原理,将波方程组行波解的存在性变为寻找一对上下解,并将结果应用于两类时滞系统. The existence of traveling wave fronts in temporally discrete reaction-diffusion systems with delays was discussed.By using Schauder's fixed point theorem and comparison principle,the existence of traveling wave fronts of the system were established.In order to to illustrate the results,traveling wave fronts of the delayed competition Lotka-Volterra model and the delayed Gilpin-Ayala model were considered.
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2016年第1期112-116,共5页 Journal of Lanzhou University(Natural Sciences)
基金 the National Natural Science Foundation of China(11461040) the Project of Gansu City Development Research Institute(2013-GSCFY-KJ04) Science Research Project of Higher Education of Gansu(2015A-122)
关键词 比较原理 单调性 波前 离散时间 上下解 comparison principle monostable traveling wave front temporally discrete upper and lower solutions
  • 相关文献

参考文献3

二级参考文献41

  • 1MURATOV C B, NOVAGA M. Front propagation in infinite cylinders: Ⅰ. a variational approach[J]. Commun Math Sci, 2008, 6(4): 799-826.
  • 2BORCKMANS P, DEWOL G, DE WIT A, et al. D- iffusive instabilities and chemical reactions[J]. Int J Bifurc Chaos, 2002, 12(11): 2 307-2 332.
  • 3MURATOV C B. A global variational structure and propagation of disturbances in reaction-diffusion systems of gradient type[J]. Discrete Cont Dyn S, 2004, 4(4): 867-892.
  • 4FISHER R A. The wave of advance of advantageous genes[J]. Ann Eugenics, 1937, 7(4): 355-369.
  • 5GARDNER R. Existence of multidimensional trav- eling wave solutions of an innitial boundary value problem[J]. J Differential Equations, 1986, 61(3): 335-379.
  • 6KOLMOGOROV A N, PESTROVSKY I G, PISKUNOV N S. A study of the equation of diffusion with in- crease in the quantity of matter and its application to a biological problem[J]. Bjul Moskowskogo Gos Univ, 1937, 1(6): 1-25.
  • 7VEGA J M. Travelling wavefronts of rectiom diffusion equations in cylindrical domains[J]. Comm Partial Differential Equations, 1993, 18(3/4): 505-531.
  • 8BERESTYCKI H, LARROUTUROU B. A semi-linear elliptic equations in a strip arising in a two- dimensional flame propagation model[J]. J Reine Angew Math, 1989(396): 14-49.
  • 9BERESTYCKI H, LARROUTUROU B, LIONS P L. Multidimensional traveling wave solutions of a flame propagation model[J]. Arch Rat Mech Anal, 1990, 111(1): 33-49.
  • 10BERESTYCKI H, NIRENBERG L. Traveling fronts in cylinders[J]. Ann Inst H Poincare Anal Nonlineaire, 1992, 9(5): 497-572.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部