期刊文献+

大跨越管道油气混输压力波速及响应特性研究 被引量:2

Research of Pressure Wave Velocity and Response Time for Oil-Gas Mixing Transportation in Large Span Pipelines
下载PDF
导出
摘要 基于双流体模型,利用小扰动理论,提出了油气混输大跨越管道压力波速模型.利用计算机编程对其求解,通过大跨越管道油气混输实例,得到了以下结论:压力波速的变化受气相影响较大,即使少量气体也能在较大程度上影响压力波速,随混输气量增大,压力波速减小,压力响应时间延长;混输低点气体所承受的压力较混输高点大,从而低点处气相压缩系数小,混输低点较混输高点压力波速增大,压力响应时间相应缩短;在输运管道低点处,气体受到极大压缩,压力波速的变化不明显,几乎收敛于恒定值,在混输管道高点处压力波速变化剧烈. Based on the 2-fluid model and the theory of small perturbation,the pressure wave velocity model was put forward for the oil-gas mixing transportation in large span pipelines,and the computer program to solve this model was built.The conclusions based on a practical engineering example are as follow:in the process of multiphase mixing large span transportation,the change of pressure wave velocity is more influenced by the gas phase,even a small amount of mixed gas can affect the pressure wave velocity dramatically.With the increase of mixed gas,the pressure wave velocity decreases and the pressure response time extends.The pressure at the low point is higher than at the high point,so the gas compressibility factor at the low point is smaller than at the high point and the pressure wave velocity at the low point is bigger,meanwhile,the pressure response time at the low point is shorter.Moreover,at the low point of mixed transportation the mixed gas is compressed tremendously,so the pressure wave velocity there changes little and almost remains at a constant value;in contrast,the pressure wave velocity changes easily at the high point.
出处 《应用数学和力学》 CSCD 北大核心 2016年第3期290-300,共11页 Applied Mathematics and Mechanics
基金 国家自然科学基金(51274170) 中国博士后科学基金(面上项目)(2015M572495)~~
关键词 压力波速 油气混输 大跨越管道 压力响应时间 虚拟质量力 pressure wave velocity oil-gas mixing transportation large span pipeline pressure response time virtual mass force
  • 相关文献

参考文献15

  • 1王聚锋,朱永东,朱凯,贺三.原油海管掺气混输工艺模拟分析[J].管道技术与设备,2010(6):51-54. 被引量:1
  • 2吴明,刘松林,安秉威,陈世一,卢涛.油气水混输管路计算模型[J].抚顺石油学院学报,1999,19(1):48-51. 被引量:3
  • 3解世伟,赵勇.湖南长岭—株洲成品油管道顺序输送混油量的计算与分析[J].石油库与加油站,2014,23(2):18-21. 被引量:1
  • 4于涛.油品混合输送在西部原油管道的应用[J].油气储运,2013,32(2):162-165. 被引量:14
  • 5Carstensen E L, Foldy L L. Propagation of sound through a liquid containing bubbles[J].The Journal of the Acoustical Society of America,1947,19(3): 481-501.
  • 6Wallis G B. One-Dimensional Two-Phase Flow[M]. New York: McGraw-Hill, 1969: 143-149.
  • 7Nguyen D L, Winter E R F, Greirer M. Sonic velocity in two-phase system[J]. International Journal of Multiphase Flow,1981,7(3): 311-320.
  • 8Cheng L Y, Drew D A, Lahey R T. An analysis of wave propagation in bubbly two component two-phase flow[J].Journal of Heat Transfer,1985,107(2): 400-402.
  • 9Ruggles A E, Lahey R T, Drew D A, Scarton H A. An investigation of the propagation of pressure perturbations in bubbly air/water flows[J].Journal of Heat Transfer,1988,110(2): 494-499.
  • 10Levitsky S, Bergman R, Haddad J. Acoustic waves in thin-walled elastic tube with polymeric solution[J]. Ultrasonics,2000,38(1/8): 857-859.

二级参考文献30

共引文献49

同被引文献19

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部