期刊文献+

自适应多特征融合目标跟踪 被引量:6

Target Tracking Based on Adaptive Fusion of Multi-feature
下载PDF
导出
摘要 针对目标跟踪在复杂场景中鲁棒性较差以及有效性较低的问题,基于在线检测跟踪框架提出一种基于回归的自适应多特征融合目标跟踪算法。对密集采样得到的各子图像块提取出多种特征分别建立目标表观模型,通过正则化最小二乘分类器得到各模型的响应,利用加权和准则融合各响应,通过求解岭回归方程自适应地在线更新各响应权重以增强局部判别力,得到精确而稳定的检测分数值,从而进行有效鲁棒地跟踪。实验结果表明,该算法在大多数复杂场景下其跟踪精度和鲁棒性优于现有的目标跟踪算法。 To solve the problem of poor robustness and low effectiveness of target tracking in complex scenes, a target tracking algorithm based on adaptive multi-feature fusion in tracking-by-detection framework is proposed. Features are extracted from the sub-images extracted by dense sampling, and the target appearance models are established respectively. The response of each model is obtained with regularized least squares classifier. The final response is achieved by weighted sums of the responses, in which the weights are updated by solving a regression equation. It helps to obtain accurate and stable detection scores by enhancing local discrimination. Experimental results show that the algorithm outperforms other state-of-the-art tracking algorithms in tracking accuracy and robustness in most complex scenes.
作者 刘行 陈莹
出处 《光电工程》 CAS CSCD 北大核心 2016年第3期58-65,共8页 Opto-Electronic Engineering
基金 国家自然科学基金资助项目(61104213 61573168) 江苏省自然科学基金资助项目(BK2011146)
关键词 目标跟踪 岭回归 多特征融合 正则化最小二乘分类器 target tracking ridge regression multi-feature fusion regularized least squares classifier
  • 相关文献

参考文献18

  • 1Comaniciu D, Meer P, Comaniciu D, et al. Mean Shift: A robust approach toward feature space analysis [J]. IEEE Transactions on Pattern Analysis & Machine Intelligence(S0162-8828), 2002, 24(5): 603-619.
  • 2XUE Mei, LING Haibin. Robust visual tracking and vehicle classification via sparse representation [J]. IEEE Transactions Pattern Analysis & Machine Intelligence(S0162-8828), 2011, 33(11): 2259-2272.
  • 3Jepson A D, Fleet D J, E1-Maraghi T R. Robust Online Appearance Models for Visual Tracking [J]. IEEE Transactions on Pattern Analysis&Maehinelntelligenee(S0162-8828), 2001, 25(10): 415-422.
  • 4Belongie S, YANG Ming-Hsuan, Babenko B. Visual tracking with online Multiple Instance Learning [C]//IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, June 22-24, 2009: 983-990.
  • 5Avidan S. Ensemble tr.acking [J]. IEEE Transactions Pattern Analysis & Machine Intelligence(S0162-8828), 2007, 29(2): 261-271.
  • 6Grabner H, Bischof H. On-line Boosting and Vision [C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, NewYork, USA, June 17-22, 2006: 260-267.
  • 7Perez P, Vermaak J, Blake A. Data fusion for visual tracking with particles [J]. Proceedings of the IEEE(S0018-9219), 2004, 92(3): 495-513.
  • 8Dalai N, Triggs B. Histograms of oriented gradients for human detection [J]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition(S1063-6919), 2005, 1(12): 886-893.
  • 9TANG Feng, Brennan S, ZHAO Qi, et al. Co-tracking using semi-supervised support vector machines [C]//IEEE llth International Conference on Computer Vision, Rio de Janeiro, Brazil, October 14-20, 2007: 1-8.
  • 10WANG Dong, LU Huchuan, CHEN Yenwei. Object tracking by multi-cues spatial pyramid matching [C]//2010 17th IEEE International Conference on Image Processing, Hong Kong, China, September 12-15, 2010: 3957-3960.

同被引文献37

引证文献6

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部