期刊文献+

相位差算法在多GPU平台上的并行化实现 被引量:1

Parallel Implementation of Phase Diversity Algorithm on Multi-GPU
下载PDF
导出
摘要 相位差算法(PD)不仅应用于波前传感器还可以作为一种图像复原技术,在波前复原与高分辨力图像事后图像复原有很大的潜力;但是,由于相位差算法的计算量大导致了在PC平台上很难实现实时处理。以CPU与GPU之间较少的数据交互为原则,本文首先对PD计算过程进行了分析,然后在多GPU平台上,对PD算法进行任务划分及优化。实验结果表明,在相差PV=2λ条件下对于256 pixels×256 pixels大小图像,经过50次迭代单GPU和双GPU分别耗时53 ms和45 ms。 Phase diversity(PD) can not only be used as wave-front sensor but also as image restoration technique. However, its computations have been perceived as being too burdensome and it is not to satisfy the real-time requirement. On the principle of minimum data communication between CPU and GPU, we analyze the process of PD algorithm and the experiment result shows that the part of optimization is appropriate to be realized on GPU. Firstly, the process of PD is analyzed and then task partition is implemented on dual GPUs. Under the experiment condition of wavefront aberration of PV=2λ, after 50 iterations, the execution time of single GPU and dual GPUs are 53 ms and 45 ms respectively for image size of 256 pixels×256 pixels.
出处 《光电工程》 CAS CSCD 北大核心 2016年第3期66-72,共7页 Opto-Electronic Engineering
基金 国家自然科学基金(11178004) 中国科学院实验室创新基金(YJ14K018)
关键词 相位差算法 自适应光学 波前探测 图像复原 并行计算 phase diversity adaptive optics wave front sensing image restoration parallel computing
  • 相关文献

参考文献7

  • 1Georges III J A, Dorrance P, Gleichman K, et al. High-speed closed-loop dual deformable-mirror phase-diversity testbed [C]// Advanced Wavefront Control: Methods, Devices, and ApplicationsV, San Diego, California, USA, August 26, 2007: 671105.
  • 2Warrnuth M W, Parker S W, Wilson A J, et al. Operation of phase-diverse adaptive-optics with extended scenes [C]// Optical Engineering Applications. International Society for Optics and Photonics, San Diego, California, USA, August 10, 2008: 709307.
  • 3赵金宇,陈占芳,王斌,汪宗洋,张楠,王建立,吴元昊,张世学.相位差异法目标函数的并行化改造[J].光学精密工程,2012,20(2):431-438. 被引量:10
  • 4汪宗洋,王建立,王斌,吴元昊.基于相位差异的图像复原方法[J].光电工程,2010,37(12):25-29. 被引量:6
  • 5陈宝林.最优化理论与方法[M].北京:清华大学出版社,2005.
  • 6Zielinski T R Robust Image-based Wavefront Sensing [M]. University of Rochester, 2011: 14-16.
  • 7Volkov V, Kazian B. Fitting FFT onto the GS0 architecture [EB/OL]//[2014-10]. http://www.cs.berkeley.edu/-kubitron/courses /cs258-S08/projects/reports/project6 report.pdf.

二级参考文献28

  • 1ROGGEMANN M C, WELSH B M. Image Through Turbulence [M]. Washington D C, USA: CRC Press, 1996.
  • 2PAXMAN R G, THELEN B J, MURPHY R J. Phase-diverse Adaptive Optics for Future Telescopes [J]. Proe. of SPIE (S0277-768X), 2007, 6711: 671103.
  • 3DOLNE J J, MENICUCCI P, MICCOLIS D, et al. Advanced Image Processing and Wave-front Sensing with Real-time Phase Diversity [J]. J. Opt. Soe. Am.A(S0740-3232), 2009, 48: 30-34.
  • 4PAXMAN R G, SCHULZ T J, FIENUP J R. Joint Estimation of Object and Aberrations by using Phase Diversity [J]. J. Opt. Soe. Am.A(S0740-3232), 1992, 9: 1072-1085.
  • 5Paxman R G, Seldin J H, LoFDAHL M G, et al. Evaluation of Phase-Diversity Techniques for Solar-image Restoration [J]. The Astrophysieal Journal(S0004-637X), 1996, 466: 1087-1099.
  • 6THELEN B J, PAXMAN R G, CARRARA D A, et al. Maximum A Posteriori Estimation of Fixed Aberrations, Dynamic Aberrations, and the Object from Phase-diverse Speckle Data [J]. J. Opt. Soe. Am. A(S0740-3232), 1999, 16: 1759-1768.
  • 7VOGEL C R. Computational Methods for Inverse Problems [M]. Philadelphia: SIAM Press, 2002.
  • 8VOGEL C R, CHAN T, PLEMMONS R. Fast Algorithms for Phase Diversity-Based Blind Deconvolution [J]. Proc. of SPIE (S0277-768X), 1998, 3353: 994-1005.
  • 9L6FDAHL M G, SCHARMER G B. Wave-front Sensing and Image Restoration from Focused and Defocused Solar Images [J]. Astron.Astrophys. Suppl.Ser(S0365-0138), 1994, 107: 243-264.
  • 10LoFDAHL M G, BERGER T E, SHINE R S, et al. Preparation of a Dual Wavelength Sequence of High-resolution Solar Photospheric Images using Phase Diversity [J]. The Astrophysical Journal(S0004-637X), 1998, 495: 965-972.

共引文献18

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部