期刊文献+

融合局部贝叶斯分类器的人脸验证 被引量:1

Face Verification by Confusing Local Bayesian Classifier
下载PDF
导出
摘要 针对人脸全局特征用于人脸验证存在的局限性,本文在Joint Bayesian人脸识别方法的基础上提出了基于局部贝叶斯分类器融合的人脸验证方法。该方法使用约束局部模型(CLM)在人脸上标注27个局部特征点,提取以这些特征点为中心的人脸块,并将它们进一步划分为互不重叠的若干个单元格;将这些人脸块的局部二值模式(LBP)特征通过Joint Bayesian统计训练得到多个局部分类器;最后利用逻辑回归模型将局部分类器融合为人脸验证分类器。在LFW(Labeled Face in the Wild)和WDRef(Wide and Deep Reference)数据库上进行了性能验证实验,实验结果表明该方法的性能要优于Joint Bayesian和其他现有典型分类器。 A novel face verification model based on confusing local Bayesian classifier will be proposed to eliminate the limitation of using global face feature for face verification. Firstly, 27 landmarks were located based on a Constrain Local Model(CLM) model. Then, face patches centered on each landmark were extracted and further split into non-overlapping cells. These face patches' Local Binary Pattern(LBP) feature can be used for creating local Bayesian classifiers by doing Joint Bayesian training. And the local classifiers were integrated in the framework of logistic regression. Finally, a face verification model was taken shape. The original approach was evaluated on the Labeled Face in the Wild(LFW) and Wide and Deep Reference(WDRef) databases. The experimental results show that our method is superior to Joint Bayesian method and most of the state-of-the-art classifiers.
出处 《光电工程》 CAS CSCD 北大核心 2016年第3期80-87,共8页 Opto-Electronic Engineering
基金 国家自然科学基金资助项目(60972114)
关键词 人脸验证 LBP 贝叶斯分类器 分类器融合 逻辑回归 face verification LBP Bayesian classifier classifier fusion logistic regression
  • 相关文献

参考文献21

  • 1LU Chaochao, ZHAO Deli, TANG Xiaoou. Face recognition using lace patch networks [C]// Proceedings of IEEE international ConfereuceonComputerVision, Sydney, Australia, Dec 1-8, 2013: 3288-3295.
  • 2ZHEN Lei, Matti Pietikainen, Stan Z Li. Learning Discriminant Face Descriptor [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence(S0162-8828), 2013, 36(2): 289-302.
  • 3CAO Qiong, Y1NG Yiming, LI Peng. Similarity Metric Learning for Face Recognition [C]/, Proceedings of IEEE International Conference on Computer Vision, Sydney, Ausmdiz~, Dec 1-8, 2013: 2408-2415.
  • 4SUN Yi, WANG Xiaogang, TANG Xiao'ou. Deep Learning [:dec Representation fiom Predicting 10 000 ('lasses [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Columbus, America, June 23-28, 2014: 1891-1898.
  • 5LU Chaochao, TANG Xiao'ou. Surpassing Human-Level Face Verification Performance on LFW with GaussianFace [C]// Proceedings of the 29th AAAI Conference on Artifieial Intelligence, Austin Texas, USA, January 25-30, 2015: 1-13.
  • 6ZHU Zhenyao, LUO Ping, WANG Xiaogang, et al. Deep learning identity-preserving face space [C]// Proceedings of IEEE International Conference on Computer Vision, Sydney, Australia, Dec 1-8, 2013: 113-120.
  • 7Patelatel V M, WU Tan, Biswas S, et al. Dictionary-Based face recognition under variable lighting and pose [J]. IEEE Transaction on Information Forensics and Security(S1556-6013), 2012, 7(3): 954-965.
  • 8ZHU Xiangxin, Ramanan D. Face detection, pose estimation, and landmark localization in the wild [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Providence, America, June 16-21, 2012: 2879-2886.
  • 9Jahanbin S, Hyohoon Chin, Bovik A C. Passive multimodal 2-D+3-D face recognition using gabor features and landmark distances [J]. IEEE Transaction on Information Forensics and Security(S1556-6013), 2011, 6(4): 1287-1304.
  • 10ZHU Xiangyu, LEI Zhen, YAN Junjie, et al. High-Fidelity Pose and Expression Normalization for Face Recognition in the Wild [C]// Proceedings oflEEE Conference on Computer Vision and Pattern Recognition, Boston, America, June 7-12, 2015: 787-796.

二级参考文献26

  • 1黎奎,宋宇,邓建奇,刘民,陈忠林,周激流.基于特征脸和BP神经网络的人脸识别[J].计算机应用研究,2005,22(6):236-237. 被引量:19
  • 2王聃,贾云伟,林福严.人脸识别系统中的特征提取[J].微计算机信息,2005,21(07X):53-55. 被引量:18
  • 3Pardas M,Bonafonte A.Facial animation parameters extraction and expression recognition using Hidden Markov Models[J].Signal Processing:Image Communication, 2002,17 : 675-688.
  • 4Calder A J,Burton A M,Miller P,et al.A principal component analysis of facial expressions[J].Vision Research,2001,41 : 1179-1208.
  • 5Dubussion S,Devoine F,Masson M.A solution for facial expression representation and recognition[J].Signal Processing:hnage Communication, 2002,17: 657-673.
  • 6Matsugu M, Mori K, Mitari Y,et al.Subject independent facial expression recognition with robust face detection using a convolutional neural network[J].Neural Networks,2003,16:555-559.
  • 7Zhan Yong-zhao, Ye Jing-fu, Niu De-jiao, et al.Facial expression recognition based on Gabor wavelet transformation and elastic templates matehing[C]//Proceedings of the Third International Con- ference on Image and Graphics,2004.
  • 8Donato G,Bartlet M,Hager J C,et al.Classifying facial actions[J]. IEEE Trans PAMI, 1999,21(10) :974-989.
  • 9Ekman P,Friesen W V.Unmasking the face:a guide to recognizing emotions from facial clues[M].[S.l.]:Consulting psychologists Press, 1975.
  • 10Picard R W.Affective computing[M].[S.l.]:The MIT Press,1998.

共引文献11

同被引文献7

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部