摘要
为提高热塑性聚氨酯(TPU)的阻隔及抗静电性能,首先,向功能化改性还原氧化石墨烯(FRGO)中加入原始碳纳米管(CNTs),并通过非共价改性制得在N,N-二甲基甲酰胺(DMF)中均匀分散的杂化粒子FRGOCNTs;然后,在涂膜机上通过溶液涂覆法制备了FRGO-CNTs/TPU复合材料膜;最后,利用FTIR、XRD、XPS、FE-SEM、TG、氧气透过仪、高阻计及万能试验机对FRGO-CNTs/TPU复合材料膜的结构和性能进行了表征。结果表明:FRGO与CNTs之间通过π-π共轭作用发挥协同效应,并且所制备的FRGO-CNTs与TPU基体的相容性较好;当FRGO-CNTs含量(以TPU为基准)为2.0wt%时,复合材料膜的热分解温度提高了49℃,氧气透过率下降了53.7%;大比表面积的FRGO与高长径比的CNTs能在TPU基体中构建导电网络;当FRGO-CNTs含量仅为0.8wt%时,FRGO-CNTs/TPU复合材料膜的体积电阻率就能下降7个数量级。与此同时,随FRGO-CNTs含量的增加,复合材料膜的拉伸强度和断裂伸长率均先上升而后下降。
In order to improve the barrier and antistatic properties of thermoplastic polyurethane(TPU),original carbon nanotubes(CNTs)were added into functional modification reduced graphene oxide(FRGO),and hybrid particles FRGO-CNTs which were uniformly dispersed in N,N-dimethylformamide(DMF)were prepared by non-covalent modification firstly.Then,FRGO-CNTs/TPU composite films were fabricated by solution coating method on the coating machine.Finally,the structures and properties of FRGO-CNTs/TPU composite films were characterized by FTIR,XRD,XPS,FE-SEM,TG,oxygen transmission rate tester,high resistance meter and universal testing machine.The results demonstrate that FRGO and CNTs produce synergistic effect throughπ-πconjugation,and the prepared FRGO-CNTs show good compatibility with TPU matrix.When FRGO-CNTs content(using TPU as reference)is 2.0wt%,the thermal decomposition temperature of composite film increases by 49 ℃,and the oxygen transmission rate decreases by 53.7%.The FRGO with large specific surface area and the CNTs with high length to diameter ratio can build the conductive network in TPU matrix.When FRGO-CNTs content is only 0.8wt%,the volume resistivity of FRGO-CNTs/TPU composite film declines by as much as 7orders of magnitude.Meanwhile,with the FRGO-CNTs content increasing,the tensile strength and elongation at break of composite films both rise at first and then go down.
出处
《复合材料学报》
EI
CAS
CSCD
北大核心
2016年第3期486-494,共9页
Acta Materiae Compositae Sinica
基金
福建省科技计划(2015H0016)
关键词
功能石墨烯
碳纳米管
热塑性聚氨酯
热稳定性
阻隔性
抗静电性
力学性能
functional graphene
carbon nanotubes
thermoplastic polyurethane
thermal stability
barrier properties
antistatic properties
mechanical properties