期刊文献+

功能化改性还原氧化石墨烯-碳纳米管/热塑性聚氨酯复合材料膜的制备及性能 被引量:32

Preparation and properties of functional modification reduced graphene oxide-carbon nanotubes/thermoplastic polyurethane composite films
原文传递
导出
摘要 为提高热塑性聚氨酯(TPU)的阻隔及抗静电性能,首先,向功能化改性还原氧化石墨烯(FRGO)中加入原始碳纳米管(CNTs),并通过非共价改性制得在N,N-二甲基甲酰胺(DMF)中均匀分散的杂化粒子FRGOCNTs;然后,在涂膜机上通过溶液涂覆法制备了FRGO-CNTs/TPU复合材料膜;最后,利用FTIR、XRD、XPS、FE-SEM、TG、氧气透过仪、高阻计及万能试验机对FRGO-CNTs/TPU复合材料膜的结构和性能进行了表征。结果表明:FRGO与CNTs之间通过π-π共轭作用发挥协同效应,并且所制备的FRGO-CNTs与TPU基体的相容性较好;当FRGO-CNTs含量(以TPU为基准)为2.0wt%时,复合材料膜的热分解温度提高了49℃,氧气透过率下降了53.7%;大比表面积的FRGO与高长径比的CNTs能在TPU基体中构建导电网络;当FRGO-CNTs含量仅为0.8wt%时,FRGO-CNTs/TPU复合材料膜的体积电阻率就能下降7个数量级。与此同时,随FRGO-CNTs含量的增加,复合材料膜的拉伸强度和断裂伸长率均先上升而后下降。 In order to improve the barrier and antistatic properties of thermoplastic polyurethane(TPU),original carbon nanotubes(CNTs)were added into functional modification reduced graphene oxide(FRGO),and hybrid particles FRGO-CNTs which were uniformly dispersed in N,N-dimethylformamide(DMF)were prepared by non-covalent modification firstly.Then,FRGO-CNTs/TPU composite films were fabricated by solution coating method on the coating machine.Finally,the structures and properties of FRGO-CNTs/TPU composite films were characterized by FTIR,XRD,XPS,FE-SEM,TG,oxygen transmission rate tester,high resistance meter and universal testing machine.The results demonstrate that FRGO and CNTs produce synergistic effect throughπ-πconjugation,and the prepared FRGO-CNTs show good compatibility with TPU matrix.When FRGO-CNTs content(using TPU as reference)is 2.0wt%,the thermal decomposition temperature of composite film increases by 49 ℃,and the oxygen transmission rate decreases by 53.7%.The FRGO with large specific surface area and the CNTs with high length to diameter ratio can build the conductive network in TPU matrix.When FRGO-CNTs content is only 0.8wt%,the volume resistivity of FRGO-CNTs/TPU composite film declines by as much as 7orders of magnitude.Meanwhile,with the FRGO-CNTs content increasing,the tensile strength and elongation at break of composite films both rise at first and then go down.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2016年第3期486-494,共9页 Acta Materiae Compositae Sinica
基金 福建省科技计划(2015H0016)
关键词 功能石墨烯 碳纳米管 热塑性聚氨酯 热稳定性 阻隔性 抗静电性 力学性能 functional graphene carbon nanotubes thermoplastic polyurethane thermal stability barrier properties antistatic properties mechanical properties
  • 相关文献

参考文献19

  • 1GRENIER S, SANDIG M, MEQUANINT K. Polyurethanebiomaterials for fabricating 3D porous scaffolds and support- ing vascular cells[J]. Journal of Biomedical Materials Re- search Part A, 2007, 82(4): 802-809.
  • 2XIANG C, LU W, ZHU Y, et al. Carbon nanotube and gra- phone nanoribbon-coated conductive Kevlar fibers[J]. ACS Applied Materials and Interfaces, 2011, 4(1): 131-136.
  • 3SANTERRE J, WOODHOUSE K, LAROCHE G, et al. Understanding the biodegradation of polyurethanes~ From classical implants to tissue engineering materials[J]. Bioma- terials, 2005, 26(35): 7457-7470.
  • 4LEE C, WEI X, KYSAR J W. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.
  • 5DU X, SKSCHKO I, BARKER A. Approaching ballistic transport in suspended grahene[J]. Nature Nanotechnolog, 2008, 3(8): 491-495.
  • 6STANKOVICH S, DIKIN D A, DOMMETT G H B, et al. Graphene-based composite material[J]. Nature, 2006, 442 (7100) : 282-286.
  • 7BIAN J, WEI X W, LIN H L, et al. Comparative study on the exfoliated expanded graphite nano sheet-PES composites prepared via different compounding method[J]. Journal of Applied Polymer Science, 2012, 124(5): 3547-3557.
  • 8BIAN J, WEI X W, LIN H L, et al. PP/PP-g-MAH/lay- ered expanded graphite oxide nanocomposites prepared via masterbatch process[J]. Journal of Applied Polymer Science, 2013, 128(1): 600-610.
  • 9全国塑料制品标准化技术委员会.塑料薄膜和薄片气体透过性试验方法压差法:GB/T1038-2000[s].北京:中国标准出版社,2000.
  • 10全国塑料制品标准化技术委员会.塑料拉伸性能的测定第3部分:薄膜和薄片的试验条件:GB/T1040.3-2006[s].北京:中国标准出版社,'2006.

二级参考文献23

  • 1汪华锋,李振华,王新庆,王淼.纳米碳管/环氧树脂复合材料的制备及力学性能[J].复合材料学报,2004,21(5):48-51. 被引量:14
  • 2刘演新,杜中杰,励杭泉.多壁碳纳米管的表面乙烯基功能化[J].材料科学与工程学报,2005,23(4):495-498. 被引量:23
  • 3Wang Huafeng, Li Zhenhua, Wang Xinqing, Wang Miao. Preparation and mechanical properties of carbon nanotubes/ resin epoxy composite [J]. Acta Materiae Compositae Sinica, 2005, 23(4): 495-498.
  • 4Gojny F H, Nastalczyk J, Roslamiec Z, Schulte K. Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites [J]. Chem Phys Lett, 2003, 370(5): 820-824.
  • 5Zhu J, Kim J D, Peng H Q, Margrave J L, Khabashesku V N, Barrera E V. Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization [J]. Nano Lett, 2003, 3(8): 1107-1114.
  • 6Coleman J N, Dalton A B, Curran S, et al. Phase separation of carbon nanotubes and turbostratic graphite using a functional organic polymer [J]. Advanced Materials, 2000, 12(3): 213-216.
  • 7Ausman K D, Piner R, Lourie O, et al. Organic solvent dispersions of single-walled carbon nanotubes: Toward solutions of pristine nanotubes[J]. Journal of Physical Chemistry B, 2000, 104(38): 8911-8915.
  • 8Eitan A, Jiang K Y, Dukes D, et al. Surface modification of multiwalled carbon nanotubes: Toward the tailoring of the interface in polymer composites [J]. Chemical of Materials, 2003, 15(16): 3198-3201.
  • 9Steuerman D W, Star A, Narizzano R, et al. Interaction between conjugated polymers and single-walled carbon nanotubes [J]. Journal of Physical Chemistry B, 2002, 106(12): 3124-3130.
  • 10Liu J Q, Xiao T, Liao K, Wu P. Interfacial design of carbon nanotube polymer composites: A hybrid system of noncovalent and covalent functionalizations[J]. Nanotechnology, 2007, 18(16): 165701.

共引文献14

同被引文献288

引证文献32

二级引证文献141

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部