期刊文献+

数字图书馆个性化搜索引擎的用户建模 被引量:3

User modeling of personalized search engine for digital library
下载PDF
导出
摘要 网络信息的高速增长导致了信息定位与获取的复杂化,通过分析目前网络的信息超载问题,对现有用户模型的表示法和更新技术进行比较,提出了一种以用户行为和用户操作的资料作为数据源,在用户兴趣漂移问题上采用兴趣衰减,即兴趣学习与常用的滑动窗口算法相结合的方法。最后以数字图书馆个性化搜索引擎中的用户建模系统的设计与实现为例,先后通过与普通向量空间表示模型的对比实验以及用户兴趣漂移时的跟踪学习,证明算法优化有利于更好地表达用户的兴趣,对提高个性化信息服务的质量有实用价值。 The rapid increasing of network information leads to the complexity of information positioning and acquisition.The existing expression method of user model and updating technology are compared by the analysis of information overloading problem of the current networks. A method of using user behavior and use operation data as the data source is proposed. The interest declining method is adopted for the user interest drift,which is integrated with interest learning and commen used sliding window algorithm. The design and implementation of user modeling system in personalized search engine of digital library is taken an example. The contrast experiments of the proposed model and the model expressed by common vector space,and tracing learning while user interest drift verifies that the optimized algorithm can better express the user interest,and has practical value to improve the quality of high personalized information service.
作者 杨凯
机构地区 河南理工大学
出处 《现代电子技术》 北大核心 2016年第7期97-102,共6页 Modern Electronics Technique
关键词 数字图书馆 个性化搜索引擎 用户建模 向量空间模型 digital library personalized search engine user modeling vector space model
  • 相关文献

参考文献6

二级参考文献26

  • 1刘业政,李亚飞,杨善林.电子商务环境下基于移动Agent的Web数据挖掘[J].计算机工程,2004,30(20):107-108. 被引量:7
  • 2姜丽华,黄敏,马永光,佟振声.基于Multi-agent技术的Web文本挖掘模型及应用[J].计算机工程,2005,31(1):217-218. 被引量:3
  • 3蒲筱哥.基于Web的个性化信息智能挖掘系统的构建[J].现代图书情报技术,2005(4):27-30. 被引量:5
  • 4Kjersti Aas,Line Eikvil.Text Categorisation:A Survey,Technical Report,Norwegian Computing Center[EB/OL].[1999-06-09].http://citeseer.nj.nec.com/aas99text.html.
  • 5Y Yang and 10.Pedersen.A comparative study on feature selection in text categorization.In Proceedings of ICML-97,14th International Conference on Machine Learning,pages 412-20,Nashville,US,1997
  • 6Dunja Mladenic,Marko Grobelink.Feature selection on hierarchy of web documents.Decision Support Systems,2003,35:45287.51
  • 7D.D.Lewis.Naive (Bayes) at forty:The Independence Assumption in Informationc Retrieval.In Proceedings of the 10th European Conference on Machine Learning,New York,1998,4~15
  • 8S.Eyheramendy,D.D.Lewis and and D.Madigan.On the Naive bayes model fortext categorization.Artificial Intelligence&Statistics 2003
  • 9Y Yang.An evaluation of statistical approaches to text categorization.Information Retrieval,1999,1(1):76~88
  • 10W.Cohen and Y Singer.Context-sensitive learning methods for text categorization.In Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,1996:307~315

共引文献77

同被引文献20

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部