期刊文献+

二次多阶段不确定系统的Bang-Bang最优控制(英文)

Uncertain Bang-Bangoptimal control for multi-stage uncertain linear quadratic systems
下载PDF
导出
摘要 在多阶段系统中,当系统转移方程受到不确定变量的干扰,该问题就称为多阶段不确定控制问题.本文把目标函数的期望值的最小值作为最优解,在贝尔曼最优性原理的基础上提出递推公式,采用动态规划方法,对问题进行求解,最终得出Bang-Bang最优控制和相应的最优解. In a multi-stage system,when the state of the system at a stage is derived from the state of the former stage and disturbed by an uncertain variable,a multi-stage uncertain optimal control problem is proposed.The idea of considering optimizing the expected value of an uncertain objective is adopted in this paper.Based on Bellman’s principle of optimality,the Bang-Bang optimal controls for the uncertain optimal control problem with a quadratic objective function subject to an uncertain linear system can be obtained.At every stage,the boundary of the optimal objective values can only be gotten,so the upper limit value is taken as the approximation of the optimal objective values.
作者 康玉洁
出处 《周口师范学院学报》 CAS 2016年第2期26-33,共8页 Journal of Zhoukou Normal University
基金 Supported by Youth Research Foundation of Zhoukou Normal University(No.zknuc0218)
关键词 多阶段系统 不确定最优控制 贝尔曼最优性原理 Bang-Bang最优控制 multi-stage system uncertain optimal control Bellman’s principle of optimality Bang-Bang optimal control
  • 相关文献

参考文献16

  • 1Merton R C. Optimal consumption and portfolio rules in a continuous time model [J]. Journal of Economic Theory.1971,3: 373 -413.
  • 2Fleming W H’Rishei R W. Deterministic and Stochastic Optimal Control [M]. New York: Springer - Verlag,1986.
  • 3Harrison J M. Brownian Motion and Stochastic Flow Systems[M]. New York: John Wiley &? Sons,1985.
  • 4Karatzas I. Optimization problems in the theory of continuous trading[J]. SIAM Journal on Control and Optimization,1989,27(6): 1221 - 1259.
  • 5Dixit A K, Pindyck R S. Investment under Uncertainty[M]. Princeton: Princeton University Press,1994.
  • 6M Athans’P L Falb. Optimal Control[M]. McGrawHifl,1966.
  • 7Xie Xueshu. The theory and application of Bang - Bang optimal control[M]. Princeton: qinghua University Press, 1986.
  • 8Peter Dorato, Changming Hsieh, Prentiss N Robinson. Optimal Bang - Bang Control of Linear Stochastic Systems witha Small Noise Parameter[J]. IEEE Transactions on Automatic Control, 1967, AC - 12(6) : 432 - 435.
  • 9A V Balakrishnan. On Stochastic Bang - Bang Control[J], Applied Mathematics and Optimization,1980, 6: 91 - 96.
  • 10S A Vakhrameev. A Bang - Bang Theorem With A Finite Number Of Swiches For Nonlinear Control System[J]. Jour-nal of Mathematical Sciences, 1997,85(3) : 950 - 95.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部