期刊文献+

Heston模型下最优投资-消费策略选择 被引量:1

Optimal Investment-consumption Policies Selection for Heston Model
下载PDF
导出
摘要 在随机金融市场模型中,研究了最优投资-消费策略选择问题.随机金融市场由无风险资产和风险资产构成,在风险资产的方差满足Heston模型下,求得最优投资-消费策略最大化终端财富和累积消费的期望折现效用.在幂效用函数情形下,通过求解值函数满足的Hamilton-Jacobi-Bellman(HJB)方程,得到了最优投资-消费策略以及值函数的显式解. The optimal investment-consumption policies selection problems were studied with stochastic financial market. In stochastic financial market,assets are composed of risk-free and risky asset,and the volatility of the risky asset was described by a Heston model. Optimal investment-consumption policies which maximize the expected discounted utility of terminal wealth and accumulative consumption was found. By solving the corresponding Hamilton-Jacobi-Bellman( HJB) equation,closed-form solutions for the value function as well as the investment-consumption policies in the power utility function case are obtained.
作者 杨鹏
出处 《郑州大学学报(理学版)》 CAS 北大核心 2016年第1期17-22,共6页 Journal of Zhengzhou University:Natural Science Edition
基金 陕西省教育厅专项科研计划项目(15JK2183)
关键词 Heston模型 HJB方程 幂效用 投资策略 消费策略 Heston model HJB equation Power utility Investment policy Consumption policy
  • 相关文献

参考文献13

  • 1METRO R C.Lifetime portfolio selection under uncertainty:the continuous time model[J].The review of economics and statistics,1969,51(3):247-257.
  • 2COX J,HUANG C F.Optimal consumption and portfolio policies when asset prices follow a diffusion process[J].Journal of economic theory,1989,49(1):33-83.
  • 3GROSSMAN S J,ZHOU Z.Optimal investment strategies for controlling draw downs[J].Mathematical finance,1993,3(3):241-276.
  • 4MAGILL M,CONSTANTINIDES G.Portfolio selection with transaction costs[J].Journal of economic theory,1976,13(2):245-263.
  • 5AKIAN M,MENALDI J,SULEM A.On the investment and consumption model with transaction costs[J].Siam J Control Optimal,1996,34(1):329-364.
  • 6EASTHAM J,HASTINGS K.Optimal impulse control of portfolio[J].Mathematics of operations research,1988,13(4):588-605.
  • 7GAO J.Optimal portfolios for DC pension plans under CEV model[J].Insurance mathematics and economics,2009,44(2):479-490.
  • 8谷爱玲,李仲飞,曾燕.Ornstein-Uhlenbeck模型下DC养老金计划的最优投资策略[J].应用数学学报,2013,36(4):715-726. 被引量:18
  • 9林祥,杨益非.Heston随机方差模型下确定缴费型养老金的最优投资[J].应用数学,2010,23(2):413-418. 被引量:24
  • 10李艳方,林祥.Heston随机方差模型下的最优投资和再保险策略[J].经济数学,2009,26(4):32-41. 被引量:11

二级参考文献61

  • 1王秋媛,杨瑞成,刘坤会,王军.考虑存贷利差的最优消费与投资组合问题[J].系统工程学报,2010,25(1):29-35. 被引量:7
  • 2Blake D, Cairns A J G, Dowd K. Pensionmetries:stochastie pension plan design and Valute-at-risk during the accumulation phase[J]. Insurance:Mathematics & Economies,2001,29:187-215.
  • 3Haberman S, Vigna E. Optimal investment strategies and risk measures in defined contribution pension schemes[J]. Insurance: Mathematics & Economics, 2002,31 : 35-69.
  • 4Deelstra G,Grasselli M,Koehl P F. Optimal design of the guarantee for defined contribution funds[J]. Journal of Economic Dynamics & Control,2004,28 : 2239-2260.
  • 5Gerrard R, Haberman S, Vigna E. Optimal investment choices postretirement in a defined contribution pension scheme[J]. Insurance: Mathematics & Economics, 2004,35 : 321-342.
  • 6Devolder P, Bosch P M, Dominguez F I. Stochastic optimal control of annuity contracts[J]. Insurance: Mathematics &Economics, 2003,33 : 227-238.
  • 7Xiao J ,Zhai H ,Qin C. The constant elasticity of variance (CEV) model and the Legendre transform-dual solution for annuity contracts[J]. Insurance: Mathematics& Economics, 2007,40 : 302-310.
  • 8Gao J W. Optimal portfolios for DC pension plans under a CEV model[J]. Insurance: Mathematics & Economics, 2009,44 : 479-490.
  • 9Gao J W. Optimal investment strategy for annuity contracts under the constant elasticity of variance (CEV) model[J]. Insurance:Mathematics and Economics,2009,45: 9-18.
  • 10Cox J C, Ingersoll J E,Ross S A. A theory of the term structure of interest rates[J]. Econometrica, 1985, 53:385-407.

共引文献46

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部