摘要
讨论了有序Banach空间E中的边值问题-u″(t)+Mu(t)=f(t,u(t)),0≤t≤1,u'(0)=u'(1)=θ的正解,其中f:[0,1]×P→P连续,P为E中的正元锥.通过新的非紧性测度的估计技巧与凝聚映射的不动点指数理论获得了该问题正解的存在性结果.
The existence of positive solutions for value problem- u″( t) + Mu( t) = f( t,u( t)),0≤t≤1,u'( 0) = u'( 1) = θin an ordered Banach spaces E was discussed,where f: [0,1]× P→P was continuous,and P was the cone of positive elements in E. An existence result of positive solutions was obtained by employing a new estimate of noncompactness measure and the fixed point index theory of condensing mapping.
出处
《郑州大学学报(理学版)》
CAS
北大核心
2016年第1期23-26,31,共5页
Journal of Zhengzhou University:Natural Science Edition
基金
国家自然科学基金资助项目(11561038)
甘肃省高等学校科研项目(2015A-149)
关键词
NEUMANN边值问题
闭凸锥
正解
凝聚映射
不动点指数
Neumann boundary value problem
closed convex cone
positive solution
condensing mapping
fixed point index