期刊文献+

求解变系数热传导方程反问题:边界条件 被引量:1

Solving the Variable Coefficient Heat Conduction Equation Inverse Problem: Boundary Condition
下载PDF
导出
摘要 主要考虑了一维变系数热传导方程反问题的有限差分方法.首先通过测量手段测得区域内部某点x1(0<x1<1)处的温度,再利用右边界条件和初始条件得到x1<x<1上的数值解,最后求解左边界x=0处的温度值. In this paper, a finite difference method is given for the one-dimensional variable coefficient inverseheat conduction equation. By mean of measurement, we can find the temperature at a point x1(0 x11) inside the body. Further, using the right boundary condition and initial condition, the numerical solution is obtained at x1 x 1. Finally, the temperature at left boundary x = 0 is solved.
出处 《伊犁师范学院学报(自然科学版)》 2016年第1期14-16,共3页 Journal of Yili Normal University:Natural Science Edition
基金 国家自然科学基金项目(11401511) 国家级大学生创新训练计划项目(201510755006)
关键词 变系数热传导方程 反问题 边界条件 有限差分法 variable coefficient heat conduction equation inverse problem boundary condition finite difference method
  • 相关文献

参考文献6

  • 1JONAS P, LOUIS A K. Approxinmate Inverse for a One-dimensional Inverse Heat Conduction Problem [J]. Inverse Problem, 2000, 16(1): 175-185.
  • 2LESNIC D, ELLIOTT L. The Decomposition Approach to Inverse Heat Conduction [J]. Journal of Mathematical Analysis and Application, 1999, 232( 1 ) : 82-98.
  • 3LIU J. A Stability Analsis on Beek's Procedure for Inverse Heat Conduction Problem [J]. Journal oF Computational Physics, 1996, 123(1) : 65-73.
  • 4SHEN S Y. A Numerical Study of Inverse Heat Conduction Problems [J]. Computers and Mathematics With Applications, 1999, 38(7-8): 173-188.
  • 5汪平.变系数热传导反问题的稳定数值边界[J].佳木斯大学学报(自然科学版),2013,31(2):294-298. 被引量:1
  • 6SHIDFAR A, POURGHOLI R. Application of finite difference method to analysis an ill-posed problem [J ]. Applied Mathematics anti Computation, 2005, 168 : 1400-1408.

二级参考文献5

  • 1X. Z. Jia , Y.B. Wang. A Boundary Integral Method for Solving Inverse Heat Conduction Problem. J. inv. Ⅲ - posed probl, 2006,14(4) :375 -384.
  • 2G . C . Hsiao, J. Saranen. Boundary Integral Solution of The 2 - Dimensional Heat Equation. Math. Meth. Appl. Sci, 1993,16 : 87 - 114.
  • 3D. Lesnic, L. Elliott. Application of the Boundary Element Meth-od to Inverse Heat Conduction Problems. J . Heat. Mass. Trans- fer,1996,39(7) :1503 - 1517.
  • 4J. I. Frankel. Residual - minimization Least - Squares Method for Inverse Heat Conduction, Comp. Math. Appl, 1996,32 (4) : 117 - 130.
  • 5L. Elden, F. Berntsson. Wavelet and Fourier Methods for Solving Sideways Equation. SIAM. Sei. Comp,2000,21(6):2187- 2205.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部