期刊文献+

基于视频的运动捕获 被引量:20

Video Based Motion Capture
下载PDF
导出
摘要 现有的运动捕获方法大都存在运动捕获设备昂贵、演员运动受限等缺点 ,为此 ,提出了一种利用视觉技术从视频中提取人体运动的方法 ,并对其中的特征跟踪和三维运动序列恢复等关键技术进行了深入研究 .基于人体模型的特征跟踪算法利用卡尔曼滤波和极线方程 ,能精确地跟踪比较大的人体运动 ;采用不共面的非线性定标模型和考虑运动不确定性的三维重建方法 ,能恢复逼真的三维人体骨架模型 .实验结果验证了基于视频的运动捕获方法的可行性和有效性 . Motion capture has been one of the most promising technologies in character animation in recent years. However, most currently available motion capture approaches suffer from costly equipment and motion restriction caused by markers. To overcome these problems, a novel approach to extract 3D motion from video using vision technology is presented. The key issues, such as feature tracking and 3D reconstruction, are deeply studied. A model-based feature racking algorithm, which utilizes Kalman filter to predict coordinates of image features and epipolar line equation to aid tracking, is presented to track human motion with great variety. A non-coplanar nonlinear calibration model and a reconstruction approach taken uncertainty into consideration are applied to restore 3D human skeleton model. At last the experimental results and analysis of our VBHA (Video Based Human Animation) system demonstrate the feasibility and effectiveness of our approaches.
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2002年第8期752-756,共5页 Journal of Image and Graphics
基金 国家自然科学基金 (6980 3 0 0 9) 教育部优秀青年教师基金以及高等学校骨干教师资助计划项目
关键词 视频动画 运动捕获 特征跟踪 三维重建 三维人体运动序列 Video based animation, Motion capture, Feature tracking, 3D reconstruction
  • 相关文献

参考文献10

  • 1[1]Sabel J C. Optical 3D motion measurement [A]. In: IEEE Instrumentation and Measurement Technology Conference[C].Brussels: IEEE Computer Society Press, 1996: 367 ~ 370.
  • 2[2]Yonemoto S, Tsuruta N, Taniguchi R. Tracking of 3D multipart objects using multiple viewpoint time-varying sequences [A]. In: Proceedings of International Conference on Pattern Recognition [C]. Santa Barabara, IEEE Computer Society Press, 1998: 490~494.
  • 3[3]Bregler C, Malik J. Tracking people with twists and exponential maps[A]. In:Proceeding of IEEE Conference Computer Vision Pattern Recognition[C], Santa Barbara :IEEE Computer Society Press, 1998:8~15.
  • 4[4]Cheng J C, Moura J M F. Tracking human walking in dynamic scenes[A]. In: Proceedings of ICIP'97[C]. Washington, DC:Computer Society Press, 1997:137~140.
  • 5[5]Badler N I. Animation 2000++ [J]. IEEE Computer Graphics and Applications. February 2000: 28~29.
  • 6[6]Liu Xiao-ming, Zhuang Yue-ting, Pan Yun-he. Video based human animation technique[A]. In : Proceeding of the 7th ACM International Multimedia Conference[C]. Orlando: ACM Press, 1999:353~362:
  • 7[7]Wren C, Azarbayejani A, Darrell T et al. Pfinder: Real-time tracking of the human body[J]. IEEE Transaction on pattern analysis and machine intelligence, 1997,19(7):780~785.
  • 8[8]Shi Jian-bo, Tomasi Carlo. Good features to track[A], In:Proc. of IEEE Computer. Soc. Conf. Computer Vision and Pattern Reconization [C]. Seattle: IEEE Computer Society Press, 1994:593~600.
  • 9[9]Fusiello A, Trucco E, Tommasini T et al. Improving feature tracking with robust statistics [J]. Pattern Analysis &Applications. 1999,2: 312 ~ 320.
  • 10[10]Tsai R Y. A versatile camera calibration technique for highaccuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses [J]. IEEE Journal of Robotics and Animation, 1987,3 (4): 323~ 344.

同被引文献225

引证文献20

二级引证文献165

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部