期刊文献+

Biomass production,nutrient cycling and distribution in age-sequence Chinese fir(Cunninghamia lanceolate)plantations in subtropical China 被引量:14

Biomass production, nutrient cycling and distribution in age-sequence Chinese fir(Cunninghamia lanceolate) plantations in subtropical China
下载PDF
导出
摘要 Biomass production and nutrient (N, P, K, Ca and Mg) accumulation, distribution and cycling were quantified in young, mature and over-mature (10-, 22-, and 34-year old) Chinese fir [Cunninghamia lanceolate (Lamb.) Hook] plantations in southern China. Total stand biomass of young, mature and over-mature stands was 38, 104 and 138 t ha-1 respectively. Biomass production increased significantly with age. Stem wood represented the highest percentage of stand biomass, accounting for 41, 55 and 63 % in the young, mature and over-mature plan- tations respectively. Nutrients concentration was highest in live needles and branches, and lowest in stem wood. The plantations accumulated more N, followed by K, Ca, Mg, and P. Nutrient return amount, nutrient utilization effi- ciency, nutrient turnover time, the ratio of nutrient return and uptake increased with stand age, which implies that young Chinese fir deplete soil nutrients to maintain growth, and efficiently utilize nutrients to decrease dependence on soil nutrients as they age. Harvesting young Chinese fir plantations would therefore lead to high nutrient loss, but prolonging the rotation length could improve soil recovery, and help sustain productivity in the long-term. Improved nutrient return through litterfall as stands get older may also be beneficial to nutrient pool recovery. Biomass production and nutrient (N, P, K, Ca and Mg) accumulation, distribution and cycling were quantified in young, mature and over-mature (10-, 22-, and 34-year old) Chinese fir [Cunninghamia lanceolate (Lamb.) Hook] plantations in southern China. Total stand biomass of young, mature and over-mature stands was 38, 104 and 138 t ha-1 respectively. Biomass production increased significantly with age. Stem wood represented the highest percentage of stand biomass, accounting for 41, 55 and 63 % in the young, mature and over-mature plan- tations respectively. Nutrients concentration was highest in live needles and branches, and lowest in stem wood. The plantations accumulated more N, followed by K, Ca, Mg, and P. Nutrient return amount, nutrient utilization effi- ciency, nutrient turnover time, the ratio of nutrient return and uptake increased with stand age, which implies that young Chinese fir deplete soil nutrients to maintain growth, and efficiently utilize nutrients to decrease dependence on soil nutrients as they age. Harvesting young Chinese fir plantations would therefore lead to high nutrient loss, but prolonging the rotation length could improve soil recovery, and help sustain productivity in the long-term. Improved nutrient return through litterfall as stands get older may also be beneficial to nutrient pool recovery.
出处 《Journal of Forestry Research》 SCIE CAS CSCD 2016年第2期357-368,共12页 林业研究(英文版)
基金 supported by the Forestry Public Benefit Research Projects of National Forestry Administration under Grant No.201304303 National Natural Science Foundation of China under Grant No.31370619 Science and Technology Project of the Fujian Province under Grant No.2014N0002 China Postdoctoral Science Foundation under Grant No.132300148
关键词 Cunninghamia lanceolate BIOMASSPRODUCTION Nutrient distribution Nutrient cycling Cunninghamia lanceolate Biomassproduction Nutrient distribution Nutrient cycling
  • 相关文献

参考文献11

二级参考文献204

共引文献354

同被引文献203

引证文献14

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部