期刊文献+

基于二维LMBP神经网络的ISM频段预测算法 被引量:2

Spectrum prediction algorithm in ISM band based on two-dimensional LMBP neural network
下载PDF
导出
摘要 随着短距离无线通信技术的快速发展及应用,ISM(2.4 GHz)频段的电磁干扰问题日益凸现,而利用频谱预测来预先获知频段的占用信息,已成为解决设备间兼容共存问题的有效途径。在验证ISM频段时域频域相关性的基础上,提出了一种时频二维LMBP神经网络,并将其应用于ISM频段的频谱预测。通过仿真和理论分析得到了最佳的时频训练组合点(△t=5、△f=2),在神经网络输入向量N=9的条件下,该点的预测准确度可达95%,相比Markov算法和时域LMBP神经网络分别提高了9%和4%的预测精度,且具有更优的训练收敛时间。 With the rapid development and application of short-range wireless communications technology, the electromagnetic interference of ISM(2.4 GHz)band has become more apparent. Using the spectral prediction algorithm to predict the information of spectrum occupancy has become an effective way to solve the problem of compatible coexistence between devices. On the basis of verifying the time-domain and frequency-domain correlation of ISM band, an LMBP neural network of time and frequency domain was proposed and applied in the spectral prediction of ISM band. Through simulations and theoretical analysis, the best training combination of time-frequency point(△t =5, △f =2) was obtained. This point improves 95% of the spectrum prediction accuracy under the conditions of the input vector N =9 of the neural network. It increased 9% and 4% prediction accuracy compared with Markov algorithm and time-domain LMBP neural network and it had a better convergence time of training.
机构地区 重庆邮电大学
出处 《电信科学》 北大核心 2016年第3期53-59,共7页 Telecommunications Science
基金 国家自然科学基金资助项目(No.11502039) 重庆市基础与前沿研究计划基金资助项目(No.cstc2015jcyj A40004) 工业和信息化部软科学项目(No.2012-R-51) 重庆邮电大学博士科研启动基金资助项目(No.A2015-41) 重庆邮电大学青年科学基金资助项目(No.A2015-62)~~
关键词 ISM频段时频相关性 BP神经网络 时频二维LMBP神经网络 频谱预测精度 time-frequency correlation of ISM band BP neural network LMBP neural network of time and frequency domain accuracy of the spectrum prediction
  • 相关文献

参考文献1

二级参考文献10

  • 1MITOLA J. Cognitive radio:making software radios more personal[J].{H}IEEE Personal Communications,1999,(4):1-2.
  • 2ACHARYA P A,SINGH S,ZHENG H. Reliable open spectrum communications through proactive spectrum access[A].New York:[s.n.],2006.1-8.
  • 3ZHAO Jianli,WANG Mingwei,YUAN Jinsha. Based on neural network spectrum prediction of cognitive radio[A].[S.l.]:IEEE Press,2011.762-765.
  • 4TANG Yujie,ZHANG Qinyu,LIN Wei. Artificial neural network based spectrum seining method for cognitive radio[A].[S.l.]:IEEE Press,2010.1-4.
  • 5MARKO H,SOFUE P,AARNE M. Performance improvement with predictive channel selection for cognitive radios[A].[S.l.]:IEEE Preas,2008.l-5.
  • 6STEFAN G,LANG T,BRAIN M. Interference-aware OFDMA resomrce allocation:a predictive approach[A].[S.l.]:IEEE Preas,2008.1-5.
  • 7ZHAO Q,TONG L,SWAMI A. Decentralized cognitive MAC for opportunistic spectrum access in Ad Hoc networks:a POMDP framework[J].IEEE Journal on Selected Areas in Communication:Special Issue Adaptive Spectrum Agile Cognitive Wireless Networks,2007,(3):589-600.
  • 8BIANCHINI M,FRASCONI P,GORI M. Learning without localminima in radial basis function networks[J].{H}IEEE Transactions on Neural Networks,1995,(3):749-756.
  • 9肖秀春,姜孝华,张雨浓.一种基函数神经网络最优隐神经元数目快速确定算法[J].微电子学与计算机,2010,27(1):57-60. 被引量:4
  • 10李鑫滨,杨景明,丁喜峰.基于递推k-均值聚类算法的RBF神经网络及其在系统辨识中的应用[J].燕山大学学报,1999,23(4):366-366. 被引量:7

共引文献4

同被引文献23

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部