期刊文献+

稳定表达H1N1流感病毒核糖核蛋白的Hela细胞株的建立 被引量:1

Stable expression of ribonucleoprotein of H1N1 influenza virus in Hela cell line
原文传递
导出
摘要 目的构建稳定表达H1N1流感病毒核糖核蛋白的Hela细胞株,为抗病毒药物筛选提供细胞模型。方法利用基因重组技术构建四种重组真核表达载体pc DNA3.1/Zeo-PB1、pc DNA3.1/Hygro-PB2、pc DNA3.1/Neo-PA、p EF6/V5-His A-NP,进行PCR和DNA测序鉴定;使用Hela细胞依次进行四种抗生素Zeocin、Hygromycin B、Geneticin(G418)、Blasticidin S HCl最小致死浓度实验,获得其最佳筛选浓度;利用Lipofectamine 2000将四种重组真核表达载体依次转染Hela细胞,并添加相应抗生素筛选稳定表达核糖核蛋白细胞株;RT-PCR以及POL I系统鉴定Hela细胞株是否稳定表达H1N1流感病毒核糖核蛋白。结果 RT-PCR初步鉴定流感病毒核糖核蛋白基因片段稳定整合在宿主基因组中,POL I系统证实核糖核蛋白在Hela细胞中已经获得了功能性表达。结论成功构建了Hela-核糖核蛋白细胞株,为以流感病毒RNA聚合酶复合体为靶点的抗流感病毒药物的研究提供了细胞模型。 Objective To construct a stable expression of ribonucleoprotein of H1N1 influenza virus of Hela cell line,with enhance green fluorescent protein as indicating protein. Methods The recombinant eukaryotic expressing plasmids pc DNA3.1 / Zeo-PB1,pc DNA3.1 / Hygro-PB2, pc DNA3.1 / Neo-PA and p EF6 / V5-His A-NP were constructed by DNA recombination technique, and confirmed by PCR and gene sequencing. The minimum lethal concentrations of Zeocin,Hygromycin B, Geneticin(G418)and Blasticidin S HCl for He La cells were determined. The Four types of recombinant plasmids were stably transfected into Hela cell using Lipofectamine 2000,and selected by corresponding antibiotics.Results The genes of ribonucleoprotein integrated into the host genome stably were proved by RT-PCR. The effective gene expression in Hela cells was confirmed by POL I system. Conclusion The stable ribonucleoprotein-expressing of Hela cells were constructed successfully, and could be used as high through put selection of target-specific anti-influenza virus drugs.
出处 《热带医学杂志》 CAS 2016年第2期158-162,F0002,共6页 Journal of Tropical Medicine
基金 深圳市科技计划项目(JCYJ20140416095154398)
关键词 HELA细胞 甲型流感病毒 核糖核蛋白 细胞模型 Hela cell Influenza A virus Ribonucleoprotein Cell model
  • 相关文献

参考文献17

  • 1Ortigoza MB,Dibben O,Maamary J,et al.A novel small molecule inhibitor of influenza A viruses that targets polymerase function and indirectly induces interferon[J].PLo S Pathogens,2012,8(4):e1002668.
  • 2Noda T,Sugita Y,Aoyama K,et al.Three-dimensional analysis of ribonucleoprotein complexes in influenza A virus[J].Nat Commun,2012,3:639-644.
  • 3Das K,Aramini JM,Ma LC,et al.Structures of influenza Aproteins and insights into antiviral drug targets[J].Nat Struct Mol Biol,2010,17(5):530-538.
  • 4He X,Zhou J,Bartlam M,et al.Crystal structure of the polymerase PAC-PB1N complex from an avian influenza H5N1virus[J].Nature,2008,454(7208):1123-1126.
  • 5Obayashi E,Yoshida H,Kawai F,et al.The structural basis for an essential subunit interaction in influenza virus RNApolymerase[J].Nature,2008,454(7208):1127-1131.
  • 6Sugiyama K,Obayashi E,Kawaguchi A,et al.Structural insight into the essential PB1-PB2 subunit contact of the influenza virus RNA polymerase[J].EMBO J,2009,28(12):1803-1811.
  • 7Shafaghat F,Abbasi-Kenarsari H,Majidi J,et al.Preparation of proper immunogen by cloning and stable expression of c DNAcoding for human hematopoietic stem cell marker CD34 in NIH-3T3 mouse fibroblast cell line[J].Adv Pharm Bull,2015,5(1),69-75.
  • 8Chaudhari AA,Jasper SL,Dosunmu E,et al.Novel pegylated silver coated carbon nanotubes kill Salmonella but they are non-toxic to eukaryotic cells[J].J Nanobiotechnology,2015,13:23.
  • 9Nowotny B,Schneider T,Pradel G,et al.Inducible APOBEC3G-Vif double stable cell line as a high-throughput screening platform to identify antiviral compounds[J].Antimicrob Agents Ch,2009,54(1):78-87.
  • 10连孟洋,王昕,彭博,武伟华,刘慧,董方圆,丁小满,房师松,郑青.流感病毒两种反向遗传学操作系统的初步构建[J].中国人兽共患病学报,2015,31(5):432-436. 被引量:2

二级参考文献58

  • 1Yi-nong Duan,Liang-heng Yi,Jin-ling Chen,Dan-dan Zhu,Jian-xin Wang,Jin-rong Feng,Yong-wei Qin,Ying Zhu.Protective effect of DNA vaccine with the gene encoding 55kDa antigen fragment against Pneumocystis carinii in mice[J].Asian Pacific Journal of Tropical Medicine,2011,4(5):353-356. 被引量:2
  • 2程小雯,郭元吉.流行性感冒病毒及其实验技术.北京:中国三峡出版社,1997:28.
  • 3Schotsaert M, De Filette M, Fiers W, et al. Universal M2 ectodomain-based influenza A vaccines: preclinical and clinical developments. Expert Rev Vaccines, 2009, 8(4): 499-508.
  • 4Feng JQ, Zhang MX, Mozdzanowska K, et al. Influenza A virus infection engenders a poor antibody response against the ectodomain of matrix protein 2. Virol J, 2006, 3: 102-114.
  • 5Mozdzanowska K, Zharikova D, Cudic M, et al. Roles of adjuvant and route of vaccination in antibody response and protection engendered by a synthetic matrix protein 2-based influenza A virus vaccine in the mouse. Virol J, 2007,4: 118-131.
  • 6De Filette M, Martens W, Roose K, et al. An influenza A vaccine based on tetrameric ectodomain of matrix protein 2. J Biol Chem, 2008, 283(17): 11382-11387.
  • 7Song HC, Nieto GR, Perez DR. A new generation of modified live-attenuated avian influenza viruses using a two-strategy combination as potential vaccine candidates. J Virol, 2007, 81(17): 9238 9248.
  • 8Solorzano A, Ye JQ, Perez DR. Alternative live-attenuated influenza vaccines based on modifications in the polymerase genes protect against epidemic and pandemic flu. J Virol, 2010, 84(9): 4587-4596.
  • 9Steel J, Lowen AC, Pena L, et al. Live attenuated influenza viruses containing NS1 truncations as vaccine candidates against H5N1 highly pathogenic avian influenza. J Virol, 2009, 83(4): 1742-1753,.
  • 10McCown MF, Pekosz A. The influenza a virus M2 cytoplasmic tail is required for infectious virus production and efficient genome packaging. J Virol, 2005, 79(6): 3595-3605.

共引文献10

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部