期刊文献+

PPy/Ni/NanoG复合材料的制备及导电性能研究

Preparation and Conductivity Characterization of PPy/Ni/NanoG Composites
下载PDF
导出
摘要 以聚吡咯(PPy)为基体,FeCl_3作为氧化剂,十二烷基苯磺酸钠(DBSNa)作为掺杂剂,表面镀有金属镍(Ni)膜的纳米石墨微片(NanoG)作为二维层状纳米填料,通过原位聚合法制备了PPy/Ni/NanoG导电复合材料,并对其结构和导电性能进行了表征。结果表明,PPy与Ni/NanoG的相容性较好,PPy聚合物均匀地包覆在Ni/NanoG片层表面和边缘;Ni/NanoG的二维受限空间的阻隔作用能够有效抑制PPy分子链的卷曲和交联,使PPy分子链共轭程度提高,π电子的离域性增加;循环伏安测试表明复合材料的峰面积大,峰电流高,导电能力强;复合材料的导电性能随Ni/NanoG含量的增加由8.2 S/cm提高到103.6 S/cm,Ni/NanoG的阈值为2%(质量分数,下同)。 Polypyrrole/Ni/graphite nanosheet ( PPy/Ni/NanoG ) was prepared via in-situ polymerization,using polypyrrole (PPy) as a matrix, FeCla as an oxidant, sodium dodecyl benzene sulfonate (DBSNa) as a doping agent, nickle coated graphite nanosheets (Ni/NanoG) as a two- dimensional nano-filler. Microstructure and electrical performance of the composites were characterized. It was found that the surfaces and edges of Ni/Nan0G sheet were coated by PPy particles, the curling and cross-linking of PPy molecular chain could be effectively suppressed by the barrier effect of Ni/NanoG, and the conductivity of the composites was improved by the enhanced conjugation of PPy molecules and increased π electron delocalization. Comparison of cyclic voltammetry between PPy and PPy/Ni/NanoG composites indicated that the conducting property of the composites was higher than that of polymers. The conductivity increased from 8. 2 to 103. 6 S/cm as Ni/NanoG content reaching 2 wt%.
出处 《中国塑料》 CAS CSCD 北大核心 2016年第3期28-32,共5页 China Plastics
基金 陕西省自然科学基金项目(2014JQ6225、2015JM2074) 陕西省教育厅自然科学基金项目(2013JK0699)
关键词 聚吡咯 石墨微片 原位聚合 电导率 polypyrrole graphite nanosheets in-situ polymerization conductivity
  • 相关文献

参考文献2

二级参考文献166

  • 1Hummers W,Offeman R.J.Am.Chem.Soc.,1958,80:1339.
  • 2He C,Yang C H,Li Y F.Synthetic Metals.,2003,139:539~545.
  • 3漆宗能 (QI Zong-neng),尚文宇 (SHANG Wen-yu).聚合物/层状硅酸盐纳米复合材料理论和实践 (The Theory and Practice of Polymer/Layered Silicate Nanocomposite).北京:化学化工出版社 (Beijing:Chemical Industry Press),2002:32~34.
  • 4Dekany I,Kruger-Hrasser R,Weiss A.Colloid Polymer.Sci.,1998,276(7):570~576.
  • 5Omastová M,Trchová M,Kovárová J,et al.Synthetic Metals,2003,138:447~455.
  • 6Wang L,Schindler J,Thomas J A,et al.Chem.Mater.,1995,7:1753~1755.
  • 7Eduardo R H.Advance Materials,1993,5(5):334~339.
  • 8Wu J,Zou Y H,Li X L,et al.Sensors and Actuators B:Chemical,2005,104(1):43~49.
  • 9Novoselov K S, Geim A K, M orozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Science ,2004,306:666 - 669.
  • 10Rao C N R, Biswas K, Subrahmanyam K S ,Govindaraj A. J Mater Chem ,2009,19:2457 -2469.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部