期刊文献+

支撑驱动的非凸压缩感知恢复算法 被引量:2

Support driven recovery algorithm for non-convex compressed sensing
下载PDF
导出
摘要 为解决带噪压缩感知信号恢复的难题,提出一种基于支撑驱动的恢复算法,分2步完成稀疏信号的恢复.1使用阈值基追踪方法获取信号支撑信息,并生成权值矩阵与所需其他参数.2使用迭代重加权算法求解非凸目标函数.在理论分析的基础上,与现有7种有竞争力的算法(含oracle估计器)进行了数值仿真比较.结果证明,文中算法以较低的运算量实现了高概率恢复. A novel method is presented for the purpose of recovering sparse high dimensional signals from few linear measurements,especially in the noisy case.The proposed method works in the following two steps: 1The support of signal is approximately identified via Thresholded Basis Pursuit(TBP),the weighting matrix and parameters needed for the next step are also computed;2 The Iteratively Reweighted Lp Minimization(IRLp)procedure is used to solve the non-convex objective function.As theoretic interpretation and simulation results show,lower computational complexity is required for the proposed Support Driven IRLp(SDIRLp)algorithm for high probability recovery,in comparison to 7analogous methods(including an oracle estimator).
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2016年第2期1-5,28,共6页 Journal of Xidian University
基金 国家自然科学基金资助项目(61379104) 陕西省自然科学基金资助项目(2014JM2-6106)
关键词 压缩感知 基追踪 迭代重加权最小p范数 compressed sensing basis pursuit iteratively reweighted Lp minimization
  • 相关文献

参考文献3

二级参考文献52

  • 1Cand6s E, Romberg J, Tao, T. Robust Uncertainty Principles: Exact Signal Reconstruction from Highly Incomplete Frequency Information [J]. IEEE Trans on Information Theory, 2006, 52(2): 489-509.
  • 2Donoho D L. Compressed Sensing [J]. IEEE Trans on Information Theory, 2006, 52(4): 1289-1306.
  • 3Duarte M, Davenport M, Takhar D, et al. Single-Pixel Imaging via Compressive Sampling [J]. IEEE Signal Processing Magazine, 2008, 25(2): 83-91.
  • 4Wakin M, Laska J, Duarte M, et al. Compressive Imaging for Video Representation and Coding [C/OL]. [2011-12- 30] . http://inside, mines, edu/- mwakin/paper/pcs-camera.*pdf.
  • 5Shi G M, Gao D H, Song X X, et al. High-Resolution lmaging Via Moving Random Exposure and Its Simulation [J]. IEEE Trans on Image Processing, 2011, 20(1) : 276-282.
  • 6Taubeck G, Hlawatsch F. A Compressed Sensing Technique for OFDM Channel Estimation in Mobile Environments: Exploiting Channel Sparsity for Reducing Pilots [C]//IEEE International Conference on Acoustics, Speech, and Signal Processing. l.as Vegas: IEEE, 2008: 2885-2888.
  • 7Wang I. J, Wu X I., Shi G M. A Compressive Sensing Approach of Multiple Descriptions for Network Multimedia Communication [C]//IEEE 10th Workshop on Multimedia Signal Processing. Cairns: IEEE, 2008: 445-449.
  • 8Wright J, Yang A, Ganesh A. Robust Face Recognition Via Sparse Representation, and Its Online Supplementary Material [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2009, 31(2) : 210-227.
  • 9l.iu B, Fu P, Meng S W. Compressive Sensing Signal Detection Algorithm Based on Location Information of Sparse Coefficients [J]. International Journal of Digital Content Technology and Its Applications, 2010, 4(8): 79-85.
  • 10Tropp J, Wakin M, Duarte M. Random Filters for Compressive Sampling and Reconstruction [C]//IEEE International Conference on Acoustics, Speech, and Signal Processing. Toulouse: IEEE, 2006: 872-875.

共引文献29

同被引文献5

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部