期刊文献+

非凸混合总变分图像盲复原 被引量:2

Non-convex hybrid total variation method for image blind restoration
下载PDF
导出
摘要 为实现模糊噪声图像的盲复原,提出了一种混合非凸总变分和高阶总变分的多正则化约束的图像盲复原方法.首先,根据自然图像边缘的稀疏特性,运用了非凸总变分对复原图像进行正则化约束;然后,结合高阶总变分正则化克服阶梯效应的优势,建立了非凸混合总变分极小化模型;最后,利用增广拉格朗日方法和新的广义p收缩算子对提出的模型进行最优化求解.实验结果表明,提出的方法能够有效保护图像边缘细节,同时消除了图像平滑区域的阶梯效应,获得高质量的复原图像. A multi-regularization constraint method for imageblind restoration is proposed to recover the blurry-noisy images.First,the non-convex total variation is adoptedas the regularization constraint by taking the sparse edges in the natural image into consideration.Next,the high-order total variation is used to overcome the staircase effects in the smooth regions of the image.Then a non-convex minimization model is proposed.Finally,the augmented Lagrangian method and a new generalized p shrinkage operator are applied to solve the model.The results of numerical experiments show that the proposed method can preserve the image edges while removing the staircase effects effectively.The high quality restored image can be obtained.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2016年第2期120-125,共6页 Journal of Xidian University
基金 上海市教育委员会科研创新资金资助项目(14YZ169)
关键词 图像复原 非凸 高阶 总变分 增广拉格朗日方法 p收缩算子 优化 image restoration non-convex high-order total variation augmented Lagrangian method p shrinkage operator optimization
  • 相关文献

参考文献2

二级参考文献35

  • 1Elhamifar E, Vidal R. Sparse Subspace Clustering [C]//IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 2790-2797.
  • 2Cheng B, Liu G C, Wang G D, et al. Multi-task Low-rank Affinity Pursuit for Image Segmentation [C]//International Conference on Computer Vision. Washington: IEEE Computer Society, 2011: 2439-2446.
  • 3Liu G C, Lin Z C, Yan S C, et al. Robust Recovery of Subspace Structures by Low-rank Representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 171-184.
  • 4Zhuang L S, Gao H Y, Ma Y, et al. Non-nenagtive Low Rank and Sparse Graph for Semi-supervised Learning [C]//IEEE Conference on Computer Vision and Pattern Recognition. Providence: IEEE, 2012: 2328-2335.
  • 5Chartrand R, Yin W T. Iteratively Reweighted Algorithms for Compressive Sensing [C]//IEEE International Conference on Acoustics, Speech, and Signal Processing. Las Vegas: IEEE, 2008: 3869-3872.
  • 6Chartrand R, Staneva V. Restricted Isometry Properties and Nonconvex Compressive Sensing [J]. Inverse Problems, 2008, 24(3): 1-14.
  • 7Saab R, Chartrand R, Yilmaz O. Stable Sparse Approximations Via Nonconvex Optimization [C]//IEEE International Conference on Acoustics, Speech, and Signal Processing. Las Vegas: IEEE, 2008: 3885-3888.
  • 8Chartrand R. Nonconvex Splitting for Regularized Low-rank+sparse Decomposition [J]. IEEE Transactions on Signal Processing, 2012, 60(11): 5810 - 5819.
  • 9Mori G, Ren X F, Efros A A, et al. Recovering Human Body Configurations: Combining Segmentation And Recognition [C]//Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition: 2. Washington: IEEE, 2004: II-326-333.
  • 10Wei S M, Lin Z C. Analysis and Improvement of Low Rank Representation for Subspace Segmentation [R/OL]. [2011-07-10]. http://arxiv.org/abs/1107.1561v1.

共引文献9

同被引文献7

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部