期刊文献+

互联网大数据的多维度网络舆情有效融合分析

Analysis of Effective Fusion of Multi Dimension Network Public Opinion of Internet Big Data
下载PDF
导出
摘要 近年来,基于大数据技术对多维度的网络舆情进行融合与分析的技术已经进入到各方的事业当中来。在这一背景下,通过对于互联网大数据的多维度网络舆情的全面剖析,找出其中最有效的融合途径与方法,并通过这一有效途径,为今后多维度网络舆情的有效融合及其相关管理与融合体系的建立提供必要的理论基础与实践指导。此种有效融合途径的实现不仅改变了网络信息的传播途径,极大的增加了传播数据,更是能够从数据底层获取其数据传播的节点信息,无论是对自身信息的融合还是舆情的管理与预判均具有积极意义。 In recent years, the technology of fusion and analyzing the multi dimension network network public opinion based on the big data technology has come into all industries. Under the background of the above, by completely analyzing the multi dimension network public opinion of internet big date, the most effective fusion approaches are found, and by these effective approaches, the necessary theoretic foundation and practical guidance are provided for the effective fusion and the construction of management and fusion system of the multi dimension network public opinion. The realization of this effective fusion approach not only changes the transmission approach of internet information and greatly increases the transmission data, but also obtains the node information of the data transmission from the data basement, which is significant for the information fusion and the management and prognosis of public opinion.
出处 《湖南工业职业技术学院学报》 2016年第1期17-19,55,共4页 Journal of Hunan Industry Polytechnic
关键词 互联网 大数据 多维度 网络舆情 有效融合途径 internet big data multi dimension network public opinion effective fusion approach
  • 相关文献

参考文献6

二级参考文献20

  • 1郭光华.论网络舆论主体的“群体极化”倾向[J].湖南师范大学社会科学学报,2004,33(6):110-113. 被引量:119
  • 2刘毅.略论网络舆情的概念、特点、表达与传播[J].理论界,2007(1):11-12. 被引量:312
  • 3祝华新.给地方政府应对网络舆论的10条建议[N].中国青年报,2009-07-24,(6).
  • 4Hadoop[EB/OL]. http://hadoop.apache.org/index.html,2012.
  • 5Y Lin, F Lv,et al. Large-scale image classification: fast feature extraction and svm training [C]. Computer Vision and Pattern Recognition (CVPR).2011 .pp. 1689-1696.
  • 6[日]城田真琴.大数据的冲击[M].北京:人民邮电出版社,2013:34-51.
  • 7Lynch C. Big Data: How do Your Data Grow?[J]. Nature,2008, 455(7209): 28-29.
  • 8Aral S, Walker D. Identifying Influential and Susceptible Members of Social Networks[J]. Science 2012 337(6092): 337-341.
  • 9巴拉巴西AL.爆发:大数据时代预见未来的新思维[M].马慧,译.北京:中国人民大学出版社.2012:2.
  • 10Agarwal S, Panda A, Mozafari B, et al. BlinkDB: Queries with Bounded Errors and Bounded Response Times on VeryLarge Data[C]. Proceedings of EuroSys, 2013: 29-42.

共引文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部