摘要
设{Ln}是从 C[a,b]到 C[c,d]的一列算子,[c,d][a,b],如果存在一个函数列{φn(x)}在[c,d]上一致趋于0,在(c,d)上为正,满足以下两条:(1)存在函数类 T(Ln)使(φn(x))-1[f(x)-Ln(f,x)]=0,x∈(c,d),成立,当且仅当 f∈T(Ln).(2)存在函数 fn∈C[a,b],f0∈T(Ln)。
Theorem 1.Let{L_n}be a sequence of positive linear operators from C[a,b]into C[c,d]with a<c<d<b and 0<μ_n=‖L_n(t-x,x)‖[c,d]→0. Suppose that {L_n} satisfies the following three conditions: (1)‖1-L_n(1,x)‖=o(μ_n). (2)L_n((t-x)~2,x)=o(μ_n),x(c,d). (3)There are c_1,c_2>0 such that c_1μ_n|≤L_n(t-x,x)|≤c_2μ_n,x(c,d)and sign L_n(t-x,x)is constant on(c,d). Then {L_n} is saturated on [c,d] with order μ_n,the trivial class T(L_n)={f; f is constant on [c,d]} and the saturation class S(L_n)={f;fLip 1 on [c,d]}.
出处
《北京师范大学学报(自然科学版)》
CAS
1982年第2期9-15,共7页
Journal of Beijing Normal University(Natural Science)