摘要
设R是具有n(n≥2)个左零因子的非交换环,本文证明了当|R|(?)n^2时,R有上界n(n-2),并对R达到上界时进行了讨论。
Let R be a non-commutative ing with n(n≥2) left zero divisors, in this note, the following theorem is proved:If |R|n^2, then |R| has the upper bound n(n-2), and the case when |R|=n(n-2), is also discussed.
出处
《北京师范大学学报(自然科学版)》
CAS
1988年第2期8-11,共4页
Journal of Beijing Normal University(Natural Science)
关键词
环
左零因子
准群
JACOBSON根
ring, left zero divisor, quasi-group, radical of Jacobson.