期刊文献+

基于高频数据的时变VaR建模和预测研究

MODELING AND FORECASTING OF DYNAMIC VAR SERIES BASED ON HIGH FREQUENCY DATA
下载PDF
导出
摘要 提出了VaR时间序列动态预测的方法.首先以上证综合指数和深证综合指数日内分钟数据为基础,根据不同方法计算出每日VaR值,然后给出了VaR时间序列的统计特征,包括平稳性和长记忆性,最后对VaR序列建立ARMA模型和ARFIMA模型,并比较了两种模型预测效果.我们的结果表明:1)基于德尔塔正态法的VaR序列其ARMA模型预测效果好于历史模拟法和蒙特卡洛模拟法的预测效果;2)尽管VaR序列存在长记忆性,但所有VaR序列的ARMA模型预测效果好于ARFIMA模型的预测效果. A method is proposed to predict dynamically the VaR time series.Daily VaR value was calculated differently based on daily data in min of Shanghai Composite Index and Shenzhen Composite Index. Statistic features of VaR time series were given,including stability and long-term memory characteristics. ARMA model and ARFIMA model were then built from VaR time series and the two models were compared to find the best predicted result.Analysis indicated that ARMA model of VaR time series based on delta-normal method had better predictive effect than that based on historical simulation method and Monte Carlo simulation method;Although VaR time series was of long memory,ARMA model of VaR time series demonstrated better predictive result than ARFIMA model.
作者 董灿 李汉东
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2014年第4期384-389,共6页 Journal of Beijing Normal University(Natural Science)
基金 中央高校基本科研业务费专项资金资助项目(2012LZD01)
关键词 VaR长记忆 ARMA模型 ARFIMA模型 VaR long memory ARMA model ARFIMA model
  • 相关文献

参考文献7

二级参考文献52

  • 1龚锐,陈仲常,杨栋锐.GARCH族模型计算中国股市在险价值(VaR)风险的比较研究与评述[J].数量经济技术经济研究,2005,22(7):67-81. 被引量:99
  • 2Engle R.F..Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation [J]. Econometrica, 1982, 50 (4): 987-1007.
  • 3Bollerslev T..Generalized Autoregressive Conditional Heteroskedasticity [ J]. Journal of Econometrics, 1986, 31 (2) : 307 - 327.
  • 4Laurent S.. Peters J.P., G @ RCH2.2: An Ox Package for Estimating and Forecasting Various ARCH Models [J]. Journal of Economic Surveys, 2002, 16 (2): 447-485.
  • 5Giot P., Laurent S.. Modeling Daily Value at Risk Using Realized Volatility and ARCH Type Models [J]. Journal of Empirical Finance, 2004, 11 (2): 379-398.
  • 6Engle R., Manganelli S..CAVaR: Conditional Autoregressive Value at Risk by Regression Quantiles [J]. Journal of Business and Economic Statistics, 2004, 22 (2) : 367 - 381.
  • 7Herzberg M., Sibbertsen P..Pricing of Options under Different Volatility Models [ R]. 2005, Unpublished Manuscript.
  • 8Ricardo A..The Estimation of Market VaR Using GARCH Models and a Heavy Tall Distributions [ R ]. 2006, Working Paper Series.
  • 9魏宇.高阶股价数据有助于对市场风险的预测吗?-基于中国股市的实证分析.中国金融评论,2007,(1):120-132.
  • 10Kupiec P.H., Techniques for verfying file accuracy of risk measurement methods [J]. Journal of derivatives, 1995, 3 (2): 73-84.

共引文献265

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部