期刊文献+

Banach空间中非齐次分数阶抽象柯西问题的Hlder正则性

Hlder Regularity of Fractional Abstract Cauchy Problem with Nonhomogeneous in Banach Space
下载PDF
导出
摘要 本文在Banach空间X中考虑相应于线性算子A的α阶抽象Cauchy问题的mild解的Hlder正则性,其中α∈(0,1),算子A生成C_0解析半群.所用方法不同于Clement等人的相应工作,并且对解析半群没有角的限制.得到如下结果:(a)如果非齐次项f∈L^p((0,b),X),1/α<P<∞,则问题的mild解是Hlder连续的;(b)如果f是Hlder连续的且函数u是问题的解,则Au是Hlder连续的. This paper is concerned with the H51der regularity of the mild solution of the fractional abstract Cauehy problem of order α∈(0,1) associated with a linear operator A in a Banach space X, where A is the generator of an analytic semigroup, and the methods is different than the one in Clement's similar work and it is no restriction of angle involved in analytic semigroup. It is shown that (a) if the nonhomogeneous term f∈Lp((0,b),X),1/α〈p〈∞, then the mild solution is Holder continuoas; (b) if f is HSlder continuous and u is the solution, then Au is HSlder continuous.
出处 《应用泛函分析学报》 2016年第1期14-30,共17页 Acta Analysis Functionalis Applicata
关键词 分数阶导数 HOLDER连续性 正则性 解析半群 fractional derivative HSlder continuity regularity analytic semigroup
  • 相关文献

参考文献18

  • 1Eidelman S, Kochubei A, Cauchy problem for fractional diffusion equations[J]. J Differential Equations, 2004, 199(2): 211 255.
  • 2Liu F, Zhuang P, Anh V, et al. A fractional-order implicit difference approximation for the space-time fractional diffusion equation[J]. ANZIAM J, 2006, 47: 48-68.
  • 3Luchko Y. Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equa- tion[J]. International Journal on Geomathematics, 2011, 1(2): 257-276.
  • 4Mainardi F, Paradisi P, Gorenflo R. Probability distributions generated by fractional diffusion equations[C]//Kertesz J, Kondor I, Econophysics: An Emerging Science, Dordrecht: Kluwer, 2000, arXiv: 0704.0320.
  • 5Tarasov M. Time fractional SchrSdinger equation[J]. J Math Phys, 2004, 45(8): 3339-3352.
  • 6Baeumer B, Meerschaert M. Stochastic solutions for fractional Cauchy problems[J]. Fractional Calculus and Applied Analysis, 2001, 4(4): 481-500.
  • 7Bajlekova E. Fractional evolution equations in Banach spaces[D]. University Press Facilities, Eindhoven University of Technology, 2001.
  • 8Chen C, Li M. On fractional resolvent operator functions[J]. Semigroup Forum, 2010, 80(1): 121-142.
  • 9Li M, Chen C, Li F B. On fractional powers of generators of fractional resolvent families[J]. Journal of Functional Analysis, 2010, 259: 2702-2726.
  • 10Lizama C, N'guerekata G. Mild solutions for abstract fractional differential equations[J]. Applicable Analysis, 2012:1 24.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部