期刊文献+

Numerical Evaluation of External Effects on Interspecific Interacting Populations

Numerical Evaluation of External Effects on Interspecific Interacting Populations
原文传递
导出
摘要 In this paper, effects of environmental and hunting parameters on the interspecific interacting populations are considered by applying the Rosenzweig-MacArthur model with the Holling type II functional response. Attenuating functions of the carrying capacity are introduced with a concern on the hunting parameters. We carry out numerical study to investigate how the population densities behave when environmental quantities change. We obtain the Hopf bifurcation diagrams from numerical results. In this paper, effects of environmental and hunting parameters on the interspecific interacting populations are considered by applying the Rosenzweig-MacArthur model with the Holling type II functional response. Attenuating functions of the carrying capacity are introduced with a concern on the hunting parameters. We carry out numerical study to investigate how the population densities behave when environmental quantities change. We obtain the Hopf bifurcation diagrams from numerical results.
出处 《International Journal of Automation and computing》 EI CSCD 2016年第2期133-141,共9页 国际自动化与计算杂志(英文版)
基金 supported by National Natural Science Foundation of China(No.11501032) Scientific Research Grant-in-Aid from JSPS(No.15K04987)
关键词 Interspecific interaction predator-prey system carrying capacity hunting effect Hopf bifurcation. Interspecific interaction, predator-prey system, carrying capacity, hunting effect, Hopf bifurcation.
  • 相关文献

参考文献19

  • 1A. Hastings. Population Biology: Concepts and Models, New York: Springer, 1998.
  • 2L.L. Rockwood. Introduction to Population Ecology, Malden: Blackwell Publishing, 2006.
  • 3P. Turchin. Complex Population Dynamics, Princeton: Princeton University Press, 2003.
  • 4D.E. Huff, J.D. Varley. Natural regulation in Yellowstone National Park's northern range. Ecological Applications, vol.9, no.1, pp.17-29, 1999.
  • 5R.M. May. Stability and Complexity in Model Ecosystems (2nd edition), Princeton: Princeton University Press, 1975.
  • 6C.S. Holling. The functional response of invertebrate preda- tors to prey density. Memoirs of the Entomological Society of Canada. vol.48, no.1, pp.1-86, 1966.
  • 7M. Rosenzweig, R. MacArthur. Graphical representation and stability conditions of predator-prey interaction. Amer- ican Naturalist, vol.97, no. 895, pp.209-223, 1963.
  • 8A.D. Bazykin. Nonlinear Dynamics of Interacting Popula- tions, Singapore: World Scienti c, 1998.
  • 9J. Hofbauer, K. Sigmund. Evolutionary Games and Popu- lation Dynamics, Cambridge: Cambridge University Press, 1998.
  • 10J.D. Meiss. Differential Dynamical Systems, Philadelphia: SIAM, 2007.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部