期刊文献+

两种群植物病虫害模型的正平衡点的稳定性

Stability of the Positive Equilibrium Point of the Model which Contains two Species of Plant Diseases and Insect Pests
原文传递
导出
摘要 考虑了病虫害存在区域内的害虫和植物的关系,根据单位时间内植物在人工喷洒杀虫剂的作用下所呈现的三种状态,建立了一个两种群植物病虫害模型.然后给出了它的唯一正平衡点,利用稳定性第一近似方法讨论了正平衡点的存在性和稳定性.最后利用MATLAB软件进行相应的数值模拟,充分地体现了结论的合理性,最终得出了针对该病虫害模型的最佳解决办法. This paper considers the relationship between the pests and plants in the area which exists the pests and diseases. According to the three state of plants under the effect of artificial pesticides in a unit of time, we set up a model of two species of plant diseases and insect pests. Then, We have given the unique positive equilibrium point of the model. And by the means of the first approximation method about the stability, we discuss the existence and stability of the equilibrium point. At last, we use Matlab to carry out corresponding numerical simulation, which fully reflects the rationality of conclusion. Finally we have got the best solution about this model of plant diseases and insect pests.
出处 《数学的实践与认识》 北大核心 2016年第6期181-185,共5页 Mathematics in Practice and Theory
基金 国家自然科学基金(61273016)
关键词 两种群 植物病虫害模型 正平衡点 稳定性 two species insect pests positive equilibrium points stability
  • 相关文献

参考文献9

  • 1宋新宇,郭红建,师向云.脉冲微分方程理论及其应用[M].北京:科学出版社,2011.
  • 2王定江.非线性森林发展系统研究进展[J].生物数学学报,2008,23(1):125-131. 被引量:14
  • 3徐为坚,陈兰荪.基于喷洒杀虫剂及释放病虫的脉冲控制害虫模型[J].数学的实践与认识,2008,38(17):89-94. 被引量:6
  • 4张娟,马知恩.各仓室均有常数输入的SEI流行病模型的全局分析[J].西安交通大学学报,2003,37(6):653-656. 被引量:13
  • 5Ross Cressman·Vlastimil Krivan.Two-patch population models with adaptive dispersal:the effects of varying dispersal speeds[J].Math Biol,2013,67:329-358.
  • 6Muntaser Safan·Mirjam Kretzschmar·Karl P.Hadeler.Vaccination based control of infections in SIRS models with reinfection:special reference to pertussis[J].Math Biol,2013,67(5):1083-1110.
  • 7Mohammad A.Safi·Mudassar Imran·Abba B.Gumel.Threshold dynamics of a non-autonomous SEIRS model with quarantine and isolation[J].Theory Biosci,2012:19-30.
  • 8廖晓昕.稳定性方法、理论和应用(第二版)[M].武汉:华中科技大学出版社,2009.
  • 9陆启韶,彭临平,杨卓琴.常微分方程与动力系统[M].北京:航空航天大学出版社,2009.

二级参考文献33

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部