期刊文献+

基于CUDA的边界变异量子粒子群优化算法 被引量:1

Boundary Mutation Quantum-behaved Particle Swarm Optimization Algorithm Based on CUDA
原文传递
导出
摘要 针对量子粒子群优化算法面对复杂优化问题时,临近最优解的搜索阶段存在收敛速度慢、在边界附近全局搜索性差的问题,提出了基于CUDA的边界变异量子粒子群优化算法.GPU(图形处理器)以多颗密集的计算核心模拟粒子的搜索过程,利用并发的优势提升粒子搜索速度;边界变异则通过以随机概率将边界粒子扩散到更大的搜索域,增加种群的多样性,提升粒子群的全局搜索性.对若干优化算法的仿真实验表明,所提出方法具有较好的全局收敛性,且同等目标精度下,取得了较高的有效加速比. For quantum particle swarm optimization algorithm in the face of complex optimization problems, and the near optimal solution search stage has the problem of slow convergence speed and poor global search, a new quantum particle swarm optimization based on CUDA is proposed in this paper. The multiple dense core was used to simulate particle search process, and the advantages of concurrent was used to improve the speed of particle search. The boundary variation is to increase the diversity of the population and improve the global search of the particle swarm by using the random probability. The simulation results of several optimization algorithms show that the proposed method has better global convergence performance. And with the same target accuracy, the high effective speedup ratio is obtained.
作者 张兰
出处 《数学的实践与认识》 北大核心 2016年第6期204-212,共9页 Mathematics in Practice and Theory
基金 国家自然科学基金(11471262) 陕西省自然科学基金(15JK1381)
关键词 量子粒子群 优化算法 边界变异 图形处理器 quantum-behaved particle swarm optimization algorithm boundary mutation GPU
  • 相关文献

参考文献12

二级参考文献68

  • 1张蕾,杨波.并行粒子群优化算法的设计与实现[J].通信学报,2005,26(B01):289-292. 被引量:9
  • 2张选平,杜玉平,秦国强,覃征.一种动态改变惯性权的自适应粒子群算法[J].西安交通大学学报,2005,39(10):1039-1042. 被引量:139
  • 3冯斌,须文波.基于粒子群算法的量子谐振子模型[J].计算机工程,2006,32(20):18-21. 被引量:11
  • 4李建明,万单领,迟忠先,胡祥培.一种基于GPU加速的细粒度并行粒子群算法[J].哈尔滨工业大学学报,2006,38(12):2162-2166. 被引量:8
  • 5Kennedy J, Eberhart R C.Particle swarm optimization[J].Institute of Electrical and Electronics Engineers, 1995( 11 ) : 1942-1948.
  • 6Elegbede C.Structural reliability assessment based on particles swarm optimization[J].Structural Safety, 2005,27(10) : 171-186.
  • 7Pobinson J, Rahmat-Samii Y.Particle swarm optimization in elec- tromagnetics[J].IEEE Transactions on Antennas and Propagation, 2004,52 (2) : 397-406.
  • 8Salman A, Ahmad I.Al-Madani S.Particle swarm optimization for task assignment problem[J].Microprocessors and Microsystems, 2002,26(8) :363-371.
  • 9Duan Yuhong, Gao Yuelin, Li Jimin.A new adaptive particle swarm optimization algorithm withdynamically changing inertia weight[J].Intelligent Information Management Systems and Technologies, 2006,2 (2) :245-255.
  • 10Gao Yuelin,Duan Yuhong.An adaptive particle swarm optimization algorithm with new random inertia weight[J].Communications in Computer and Information Science, 2007 (3) : 342-350.

共引文献127

同被引文献10

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部