摘要
轴承故障信号中的周期冲击成分会受到轴承元件间碰撞产生非周期冲击成分以及工况噪声的干扰,难以提取故障特征。使用自回归最小熵反褶积方法对故障信号处理,首先用自回归模型滤除非周期冲击成分,再使用最小熵反褶积方法对周期冲击成分进行增强,通过仿真和实验信号处理结果证明了该方法的有效性。
Cycle impact component of the bearing fault signal can be influenced by the non periodic impact component and working condition noise produced by the bearing components. Fault component can be disturbed by non periodic impact component and noise. Autoregressive minimum entropy deconvolution method for fault signal processing was used. First,autoregressive model filter non- periodic impact component was used,and then the minimum entropy deconvolution method to enhance the fault component was used. Signal processing by simulation and experiment results prove the effectiveness of the proposed method.
出处
《仪表技术与传感器》
CSCD
北大核心
2016年第1期90-92,102,共4页
Instrument Technique and Sensor
基金
内蒙古自治区自然科学基金项目(2012MS0717)