期刊文献+

基于自回归最小熵反褶积的滚动轴承故障诊断 被引量:3

Fault Diagnosis for Rolling Bearing Based on Autoregressive Minimum Entropy Deconvolution
下载PDF
导出
摘要 轴承故障信号中的周期冲击成分会受到轴承元件间碰撞产生非周期冲击成分以及工况噪声的干扰,难以提取故障特征。使用自回归最小熵反褶积方法对故障信号处理,首先用自回归模型滤除非周期冲击成分,再使用最小熵反褶积方法对周期冲击成分进行增强,通过仿真和实验信号处理结果证明了该方法的有效性。 Cycle impact component of the bearing fault signal can be influenced by the non periodic impact component and working condition noise produced by the bearing components. Fault component can be disturbed by non periodic impact component and noise. Autoregressive minimum entropy deconvolution method for fault signal processing was used. First,autoregressive model filter non- periodic impact component was used,and then the minimum entropy deconvolution method to enhance the fault component was used. Signal processing by simulation and experiment results prove the effectiveness of the proposed method.
出处 《仪表技术与传感器》 CSCD 北大核心 2016年第1期90-92,102,共4页 Instrument Technique and Sensor
基金 内蒙古自治区自然科学基金项目(2012MS0717)
关键词 滚动轴承 故障诊断 自回归 最小熵反褶积 rolling bearing fault diagnosis autoregressive model MED
  • 相关文献

参考文献3

二级参考文献28

  • 1程军圣,于德介,杨宇.基于EMD的能量算子解调方法及其在机械故障诊断中的应用[J].机械工程学报,2004,40(8):115-118. 被引量:85
  • 2何俊,陈进,毕果,周福昌,李富才.谱相关函数的解调原理分析[J].机械科学与技术,2005,24(7):771-774. 被引量:5
  • 3董广明,陈进,雷宣扬,宁佐贵,王东升,王雄祥.基于小波包-神经网络方法的支撑座连接螺栓松动损伤诊断的实验研究[J].机械科学与技术,2006,25(1):102-106. 被引量:15
  • 4毕果,陈进,李富才,何俊,周福昌.谱相关密度分析在轴承点蚀故障诊断中的研究[J].振动工程学报,2006,19(3):388-393. 被引量:10
  • 5RANDALL R B, ANTONI J. Rolling element bearing diagnostics-a tutorial[J]. Mechanical Systems and Signal Processing, 2011, 25: 485-520.
  • 6ANTONI J. The spectral kurtosis: A useful tool for characterizing non-stationary signals[J]. Mechanical Systems and Signal Processing, 2006, 20(6): 282-307.
  • 7ANTONI J, RANDALL R B. the spectral kurtosis: Application to the vibratory surveillance and diagnostics of rotating machines[J]. Mechanical Systems and Signal Processing, 2006, 20(6): 308-331.
  • 8BARSZCZ T, JABLONSKI A. A novel method for the optimal band selection for vibration signal demodulation and comparison with the kurtogram[J]. Mechanical Systems and Signal Processing, 2011, 25(1): 431-451.
  • 9TANDON N, CHOUDHURY A. An analytical model for the prediction of the vibration response of rolling element bearings due to a localized defect[J]. Journal of Sound and Vibration, 1997, 205(3): 275-292.
  • 10HO D, RANDALL R B. Optimization of bearing diagnostic techniques using simulated and actual bearing fault signals[J]. Mechanical Systems and Signal Processing, 2000, 14(5): 763-788.

共引文献159

同被引文献19

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部