期刊文献+

面向多源城市出行数据的可视化查询模型 被引量:4

A Visual Query Model for Multi-Source Urban Mobility Data
下载PDF
导出
摘要 多源城市出行数据为理解城市现象和享受城市生活带来了机遇.利用统计物理学和数据挖掘技术,人们在多源城市出行数据的研究上取得了很大进展,但是基于可视分析方法的研究甚少.为此,提出了一种可视化查询模型旨在解决应用可视分析方法研究多源城市出行数据时所面临的数据组织和可视表达上的挑战.查询模型从数据抽象,数据组织和管理,查询交互界面以及可视化分析等方面进行探讨,介绍了相关方法和技术.最后实现了查询模型的实例系统并通过典型案例证明了查询模型的有效性. Multi-source mobility data provides an opportunity to understand urban phenomena and enjoy the urban life. Existing efforts have been made for studying multi-source mobility data via statistical physics models and data mining technologies. However, little attention is paid on visual analytics methods. In this paper, a visual query model is proposed to study multi-source human mobility data in a city to handle challenges from data management and visualization. First, principles of data abstraction are defined to produce a general mobility data model. Second, several novel data management methods are employed to enhance fetching data in real-time. Then, a query interface and a series of visualization techniques are introduced to improve user's analysis. Finally, a demo system is implemented and some typical cases demonstrate the effectiveness and efficiency of our model.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2016年第1期25-31,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金优秀青年基金(61422211) 国家自然科学基金重点项目(61232012) 国家自然科学基金(61303141) 国家“九七三”重点基础研究发展计划项目(2015CB352503) 浙江省自然科学基金(Y12F020172)
关键词 多源城市出行数据 可视化查询 查询模型 可视分析 multi-source mobility data visual query query model visual analytics
  • 相关文献

参考文献1

二级参考文献74

  • 1郑宇,谢幸.基于用户轨迹挖掘的智能位置服务[J].中国计算机学会通讯,2010,6(6):23-30.
  • 2Zheng Y, Capra L, Wolfson O, et al. Urban Com- puting: Concepts, Methodologies, and Applications [J]. ACM Transactionson Intelligent Systems and Technology, 2014,3 (5), DOI: 10. 1145/1290002. 129O0O3.
  • 3Zheng Y, Liu Y, Yuan J, et al. Urban Computing with Taxicabs[C]. UbiComp,Beijing, 2011.
  • 4Yuan J, Zheng Y, Xie X. Discovering Regions of Different Functions in a City Using Human Mobility and POIs[C]. KDD, Beijing,2012.
  • 5Wang Y, Zheng Y, Xue Y. Travel Time Estimation of a Path Using Sparse Trajectories[C]. KDD, New York, 2014.
  • 6Yuan J, Zheng Y, Zhang C, et al. T-Drive: Driving Directions Based on Taxi Trajectories[C]. SIGSPA- TIAL GIS,San Jose, California, 2010.
  • 7Yuan J, Zheng Y, Xie X, et al. Driving with Knowledge from the Physical World[C]. KDD,San Diego, California, 2011.
  • 8Yuan J, Zheng Y, Xie X, et al. T-Drive: Enhancing Driving Directions with Taxi Drivers' Intelligence[J].IEEE Transactions on Knowledge and Data Engineering, 2013,25 ( 1 ) : 220 -232.
  • 9Yuan J, Zheng Y, Zhang I., et al. Where to Find My Next Passenger? [C]. UbiComp,Beijing ,2011.
  • 10Yuan J, Zheng Y, Zhang L, et al. T-Finder: A Recommender System for Finding Passengers and Vacant Taxis[J]. IEEE Transactions on Knowl- edge and Data Engineering , 2013, 25 ( lO ) : 2 390- 2 403.

共引文献94

同被引文献35

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部