期刊文献+

有限群的E-可补准素子群

Some Primary Subgroups E-supplemented of Finite Group
下载PDF
导出
摘要 运用极小阶反例法,研究E-可补子群对有限群幂零性的影响。在群系中,利用群G的正规子群(Sylow子群)的n-极大子群在G中的E-可补性,得到G为幂零群的一些充要条件,推广和改进了Skiba、李长稳等得出的一些结论。 The authors investigated the influence of E-supplemented subgroups on nilpotency of finite groups by using the method of minimal order counterexample.A series of necessary and sufficient conditions for a group to be nilpotent are obtained in formation by means of some groups of G,such as n-the maxmal subgroups of the normal subgroup of G,n-maxmal subgroups of the Sylow subgroup of G,etc.Some of Skiba and Changwen Li's results are generalized and improved.
作者 杨雪 易小兰
出处 《浙江理工大学学报(自然科学版)》 2016年第2期313-316,共4页 Journal of Zhejiang Sci-Tech University(Natural Sciences)
基金 国家自然科学基金项目(11471055)
关键词 有限群 S-拟正规 s-拟正规嵌入 E-可补子群 P-幂零 finite group s-quasi-normality s-quasi-normal E-embedding supplemente subgroup p-nilpotency
  • 相关文献

参考文献2

二级参考文献32

  • 1GUO WenBin,XIE FengYan,LI BaoJun.Some open questions in the theory of generalized permutable subgroups[J].Science China Mathematics,2009,52(10):2132-2144. 被引量:11
  • 2韦华全,卢若飞,刘晓蕾.有限群的π-拟正规嵌入子群与p-幂零性[J].中山大学学报(自然科学版),2005,44(4):1-3. 被引量:1
  • 3Li Y M. G-covering systems of subgroups for the class of supersoluble groups. Siberian Math J, 46(3): 474-480 (2006).
  • 4Ballester-Bolinches A, Pedraza-Aguilera M C. On minimal subgroups of finite groups. Acta Math Hungar, 73:335-342 (1996).
  • 5Shaalan A. The influnece of π-quasinormality of some subgroups on the stucture of a finite group. Acta Math Hungar, 56:287-293 (1990).
  • 6Guo X Y, Shum K P. On p-nilpotency of finite group with some subgroup c-supplemented. Algebra Colloq, 10:259-266 (2003).
  • 7Miao L, Guo W B. On c-supplemented primary subgroups of finite groups. Proc F.Scorina Gomel State University, 6(27): 3-10 (2004).
  • 8Skiba A N. On weakly s-permutable subgroups of finite groups. J Algebra, 315:192 209 (2007).
  • 9Guo W B. The Theory of Class of Groups. Beijing-Boston: Science Press-Kluwer Academic Publishers, 2000.
  • 10Huppert B, Blackburn N. Finite Groups. New York: Springer-Verlag, 1982.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部