期刊文献+

基于自然语言处理的交通拥堵程度评价 被引量:1

Assessment of the level of congestion based on natural language processing
原文传递
导出
摘要 近年来,微博等社交媒体上出现了越来越多的道路交通信息。微博交通数据能够有效补充传统交通数据,为交通分析提供一个新维度。该文以微博数据为基础,总结了人们用自然语言表达交通拥堵程度的常用方式,采用模糊评价方法量化不同人用自然语言描述交通拥堵时的主观感受;采用模糊推理方法进行数据融合,综合评价多人用自然语言描述同一路段道路通行状况时该路段的交通拥堵程度。实验选取3个路段拍摄一定时长的实际路况视频,邀请受试者随机抽取视频片段并对该时刻的交通状况做出主观评价。实验融合评价结果与百度地图发布的实时路况具有一致性,验证了该方法的可行性。 In recent years,an increasing amount of traffic information has been posted on social media such as micro-blogs. This information provides a new opportunity for traffic analysis using micro-blog traffic data to supplement traditional traffic data.The micro-blog data has been analyzed to identify frequently-used natural language description of traffic conditions with fuzzy assessments used to quantify the subjective feelings of different people describing traffic congestion with natural language.The fuzzy reasoning data fusion method aggregated evaluations by different people describing the congestion of the same section of a road.Videos were collected from three road segments with observers invited to evaluate the road traffic conditions in the videos.The integration results are similar to the real-time traffic scenarios released by Baidu Map,which verify the feasibility of this fuzzy method.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第3期287-293,共7页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金重点项目(90924002) 国家自然科学青年基金项目(71301083) 清华大学自主科研项目(20151080412)
关键词 交通工程 评价方法 模糊推理 自然语言 transportation engineering assessment method fuzzy reasoning natural language
  • 相关文献

参考文献2

二级参考文献6

  • 1李维生.大中城市交通拥挤堵塞问题的分析及对策[J].内蒙古农业大学学报(社会科学版),2004(2):81-82. 被引量:15
  • 2[2]Boarnet M,Kim E.Measuring Traffie Congestion.In Transportation Research Record,No 1634:Journal of Transportation Research Board series,TRB,National Research Council[C].Washington,D.C.,1998:93-99.
  • 3[3]Lindley J.A Methodology for Quantifying Urban Freeway Congestion[M].Transportation Research Board,1987:1-7.
  • 4[5]Turner S,Lomax T,Levinson H.Measuring and Estimating Congestion Using Travel Time-Based Procedures.In Transportation Research Record,No 1564:Journal of Transportation Research Board series,TRB,National Research Council[C].Washington,D.C.,1996:11-19.
  • 5[6]Turner S,Holdener D.Probe Vehicle Sample Sizes for Real-Time Information:Tbe Houston Experience.Proceedings of the Vehicle Navigation and Information System Conference[C].Seattle:IEEE,1995:3-10.
  • 6[7]Robert R,Theodore F.Contrasting the Use of Time-Based and Distance-Based Measures to Quantify Traffic Congestion Levels:An Analysis of New Jersey Counties.The 81th Annual Meetings of the Transportation Research Board[C],Washington,D.C.,2002.

共引文献19

同被引文献1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部