期刊文献+

一种短期风电功率集成预测方法 被引量:15

An integrated forecasting method of short-term wind power
下载PDF
导出
摘要 为提高短期风电功率预测精度,缩短模型训练时间,提出了一种短期风电功率集成预测方法。根据风速功率曲线和风速频率特征,将风速划分为高、中、低三段,并对每段的风速功率特征进行统计分析。高、低风速段功率波动较大,使用最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)方法可取得较高的预测精度。中风速段风速数据点较多,且风速和功率有明显的物理关系,使用高斯(Gaussian)模型预测。并用风速功率等级表对各段预测的结果进行订正,保证了算法的稳定性。用上海某风电场2014年的历史数据,验证了Gaussian模型以及高、中、低风速段对应的预测算法选取的合理性。与LSSVM预测方法相比较,集成预测方法既提高了预测精度又缩短了预测时间,适合风电场短期功率的实时预测。 An integrated forecasting method of short-term wind power is presented for improving prediction accuracy and shortening the model training time. Based on the characteristic of wind power curve and wind speed frequency, the wind speed is divided into high, medium and low three segments, and each wind power characteristic is analyzed. As the predicted power shows larger fluctuated statuses in segments of high and low wind speed, so Least Squares Support Vector Machine is used to achieve better prediction accuracy. Much more data can be accessed in the medium segment, and there is an obvious physical relationship between wind speed and power, so Gaussian Model is used under this sort of circumstance. At the same time, the level table of wind and power is used to revise the predicted power in each section to ensure the stability of the algorithm. The rationality of Gaussian model and selection of algorithm in high, medium and low segment is verified by using the historical data of a wind farm of Shanghai in 2014. The simulated result compared with LSSVM'S shows that the proposed algorithm can not only improve the prediction accuracy, but also shorten the model training time. It can be well used to predict short-term wind power in real-time.
出处 《电力系统保护与控制》 EI CSCD 北大核心 2016年第7期90-95,共6页 Power System Protection and Control
基金 江苏省六大人才高峰资助项目(WLW-021) 国家公益性行业(气象)科研专项资助项目(GYHY201106040) 江苏省高校优势学科建设工程资助项目
关键词 短期风电功率预测 集成预测方法 Gaussian模型 LSSVM Weibull short-term wind power prediction integrated prediction method Gaussian model LSSVM Weibull
  • 相关文献

参考文献9

二级参考文献134

共引文献440

同被引文献181

  • 1呼津华.低风速风电项目风资源分析的几点体会[J].风能,2012(4):79-79. 被引量:8
  • 2MU YunFei & JIA HongJie Key Laboratory of Power System Simulation and Control of Ministry of Education, Tianjin University, Tianjin 300072, China.An approach to determining the local boundaries of voltage stability region with wind farms in power injection space[J].Science China(Technological Sciences),2010,53(12):3232-3240. 被引量:15
  • 3唐伟,周志华.基于Bagging的选择性聚类集成[J].软件学报,2005,16(4):496-502. 被引量:95
  • 4Papaefthymiou G , Kurowicka D. Using Copula formodeling stochastic dependence in power systemuncertainly analysis [J] . IEEE Transactions on PowerSystems, 2009, 2 4 ( 1 ) : 4049.
  • 5Faugeras 0 P. A quantile-copula approach to conditionaldensity estimation [J] . Journal of Multivariate Analysis,2009, 1 0 0(9) : 2083-2099.
  • 6Gardes L , Girard S. Nonparametric estimation of theconditional tail copula[J] . Journal of MultivariateAnalysis, 2015, 1 3 7 (4) : 1-16.
  • 7Johan S. Hybrid copula estimators[J] . Journal ofStatistical Planning and Inference, 2014,160: 23-34.
  • 8Nelsen R B. An introduction to copulas[M] . New Y ork:Springer, 2006.
  • 9Epanechnikov V A. Nonparametric estimation of amultivariate probability density [J] . Theory of Probabilityand its Applications, 1969, 1 4 (1 ) : 153-158.
  • 10Qin Zhilong, Li Wenyuan, Xiong Xiaofu. Estimatingwind speed probability distribution using kernel densitymethod [J] . Electric Power Systems Research, 2011,8 1 (1 2 ) : 2139-2146.

引证文献15

二级引证文献192

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部