期刊文献+

熵理论及其在水文水资源中的应用研究 被引量:1

Entropy Theory and Its Application in Hydrology and Water Resources
下载PDF
导出
摘要 水文水资源系统是一个复杂的非线性系统,研究水资源系统中的不确定信息以及水文事件的相关性属性具有重要意义。熵理论是进行水文不确定性度量和相关性分析的有效方法。本文综述了最大熵原理和基于熵理论的相关性分析方法,探究了其在水文水资源学科中的应用,分析了其特点、优势和存在的问题,并对熵理论今后的研究方向进行了展望。 Hydrology and water resources system is a complex and nonlinear system. It is of great significance to study how to deal with the uncertainty in water resources system and analyze the correlation among hydrological variables. Entropy theory can measure the uncertainty of hydrological information and analyze the dependences among hydrological variables. In this paper, the principle of maximum entropy(POME) and the correlation analysis method based on entropy theory were introduced. The application of entropy theory in hydrology and water resources was reviewed. The characteristics, advantages and disadvantages of these methods were analyzed. Finally, the future research on entropy theory and its application in hydrology and water resources was discussed.
出处 《水资源研究》 2016年第1期23-32,共10页 Journal of Water Resources Research
基金 国家自然科学基金项目(51309104、51539009) 武汉市科技支撑项目(2014060101010064)
关键词 水文水资源 熵理论 最大熵原理 相关性分析 应用研究 Hydrology and Water Resources Entropy Theory Principle of Maximum Entropy Correlation Analysis Application
  • 相关文献

参考文献61

  • 1SHANNON, C. E. A mathematical theory of communication. The Bell System Technical Journal, 1948, 27(3): 379-423.
  • 2张明,金菊良,张礼兵.信息论方法在水资源系统工程中的应用[J].中国人口·资源与环境,2007,17(2):79-83. 被引量:12
  • 3Jaynes, E. T. On the rationale of maximum entropy methods. Proceedings of the IEEE, 1982, 70(9): 939-952.
  • 4王栋,朱元甡.最大熵原理在水文水资源科学中的应用[J].水科学进展,2001,12(3):424-430. 被引量:54
  • 5SONUGA, J. O. Principle of maximum entropy in hydrologic frequency analysis. Journal of Hydrology, 1972, 17(3): 177-219.
  • 6SONUGA, J. O. Entropy principle applied to the rainfall-runoffprocess. Joumal of Hydrology, 1976, 30(1): 81-94.
  • 7SOGAWA, N., ARAKI, M. and IMAI, T. Studies on multivariate conditional maximum entropy distribution and its characte- ristics. Journal of Hydroscience and Hydraulic Engineering, 1986, 4(1): 79-97.
  • 8SINGH, V. P., RAJAGOPAL, A. K. A new method of parameter estimation for hydrologic frequency analysis. Hydrological Science and Technology, 1986, 2(3): 33-40.
  • 9SINGH, V. P., SINGH, K. Derivation of the Gamma distribution by using the principle of maximum entropy (POME). Journal of the American Water Resources Association, 1985, 21 (6): 941-952.
  • 10SINGH, V. P., SINGH, K. Derivation of the Pearson type (PT) III distribution by using the principle of maximum entropy (POME). Journal of Hydrology, 1985, 80(3 -4): 197-214.

二级参考文献142

共引文献463

同被引文献20

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部