期刊文献+

New pearlitic steels for 21st century rail applications 被引量:1

New pearlitic steels for 21st century rail applications
下载PDF
导出
摘要 To improve competitiveness,the nation's railroads have increased the axle loads and speed of the trains.This has led to a rapid decrease in the life expectancy of premium rails through accelerated wear,rolling contact fatigue and fracture.To counter this effect,the railroads need rails that exhibit better performance in these areas.A research program has been initiated to study the microstructural aspects of near-eutectoid steels that would improve these properties.The first phase of the work was to carefully characterize the existing commercial rail steels in terms of pearlite interlamellar spacing,steel cleanliness and the presence of pro-eutectoid cementite on prior-austenite boundaries.These characterizations were then correlated with both mechanical properties and overall rail performance.The second phase of the program was to develop a better microstructure through control of composition,thermomechanical processing and cooling path.This was achieved through the use of laboratory-melted heats of experimental near-eutectoid compositions and a computer controlled MTS compression machine modified for axisymmetric compression testing and subsequent controlled cooling.The optimum processing route for these new steels has been determined,and pilot-scale heats have been melted,hot rolled and cooled using the information gained from the MTS investigations.The mechanical properties of these new steels have been determined and the rail performance tests are being conducted using laboratory-scale evaluation.Ultimately,these new rail steels will be tested under commercial conditions on the TTCI test track in Pueblo,Colorado.This paper will report on the alloy and processing design and resulting properties of the steels developed in this research program.Guidelines for future rail compositions and processing to obtain improved properties and performance will be presented. To improve competitiveness,the nation's railroads have increased the axle loads and speed of the trains.This has led to a rapid decrease in the life expectancy of premium rails through accelerated wear,rolling contact fatigue and fracture.To counter this effect,the railroads need rails that exhibit better performance in these areas.A research program has been initiated to study the microstructural aspects of near-eutectoid steels that would improve these properties.The first phase of the work was to carefully characterize the existing commercial rail steels in terms of pearlite interlamellar spacing,steel cleanliness and the presence of pro-eutectoid cementite on prior-austenite boundaries.These characterizations were then correlated with both mechanical properties and overall rail performance.The second phase of the program was to develop a better microstructure through control of composition,thermomechanical processing and cooling path.This was achieved through the use of laboratory-melted heats of experimental near-eutectoid compositions and a computer controlled MTS compression machine modified for axisymmetric compression testing and subsequent controlled cooling.The optimum processing route for these new steels has been determined,and pilot-scale heats have been melted,hot rolled and cooled using the information gained from the MTS investigations.The mechanical properties of these new steels have been determined and the rail performance tests are being conducted using laboratory-scale evaluation.Ultimately,these new rail steels will be tested under commercial conditions on the TTCI test track in Pueblo,Colorado.This paper will report on the alloy and processing design and resulting properties of the steels developed in this research program.Guidelines for future rail compositions and processing to obtain improved properties and performance will be presented.
出处 《Baosteel Technical Research》 CAS 2010年第S1期59-,共1页 宝钢技术研究(英文版)
关键词 rail steels interlamellar spacing pearlite colony pro-eutectoid cementite rail steels interlamellar spacing pearlite colony pro-eutectoid cementite
  • 相关文献

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部