期刊文献+

一种通用云计算资源调度问题的快速近似算法 被引量:16

A Fast Approximation Algorithm for the General Resource Placement Problem in Cloud Computing Platform
下载PDF
导出
摘要 在分布式云计算平台中,面向大规模用户的在线应用需处理针对海量资源的用户需求,在给定的资源预算下,服务提供商需确定最优资源放置位置,以最大程度地满足用户需求,通常需求用给定时间段内均值表示.然而真实场景中用户需求是高度动态和随机的,采用随机需求模型以考虑更多需求细节,资源利用率可得到进一步优化.但相比均值调度方法,随机需求模型会导致很高的计算复杂度.已有的最优解求解算法的时间复杂度和资源总量成正比,无法满足海量资源在线调度的效率要求.基于非线性规划理论,提出了一个快速资源分配算法,该算法可将计算复杂度降低至最优解算法的1‰,并逼近最优解效果的99%,因此可用于在线应用场景中海量资源的高效调度. There are regionally distributed demands for various resources in cloud based large-scale online services.Given fixed resource budget,the service providers need to decide where to place resources to satisfy massive demands from all regions,where demands are usually represented by mean value in given time span.However,in scenarios with a large number of resources,demands are dynamic and stochastic,considering fine-grained demands and adopting stochastic model will further improve resource utilization.Compared with mean demand-based algorithm,considering demand stochasticity in algorithm will increase resource utilization ratio,but also leads to high time complexity.The time complexity of optimal algorithm is linear to total amount of resources,thus may be inefficient when dealing with a large number of resources.Based on nonlinear programming theory,we propose Fast Resource Placement(FRP),an effective resource placement method of high efficiency.In the algorithm,optimal solution is represented by continuous functions of input,and we construct approximation functions to reduce the computation complexity. The preliminary experiments show that in scenarios with general settings,compared with optimal algorithm,FRP can reduce the computation time by three orders of magnitude,and can achieve 99% effect of optimal solution.Therefore,FRP can be used to schedule large number of resources efficiently in time-tense scheduling scenarios.
出处 《计算机研究与发展》 EI CSCD 北大核心 2016年第3期697-703,共7页 Journal of Computer Research and Development
基金 国家自然科学基金项目(U1504607 61202099) 河南省教育厅科学技术研究重点基金项目(2010A520008 13A413001 14A520018) 河南省重点科技攻关基金项目(102102210025) 新世纪优秀人才支持计划基金项目(NCET-12-0692) 河南工业大学博士基金项目(2012BS011 2013BS003) 河南工业大学自然科学基础研究重点培育计划基金项目(2014JCYJ04)~~
关键词 随机需求 资源调度 资源放置 非线性规划 云计算 stochastic demand resource scheduling resource placement nonlinear programming cloud computing
  • 相关文献

参考文献4

二级参考文献75

  • 1孙瑞锋,赵政文.基于云计算的资源调度策略[J].航空计算技术,2010,40(3):103-105. 被引量:43
  • 2宾雪莲,杨玉海,金士尧.一种基于分组与适当选取策略的实时多处理器系统的动态调度算法[J].计算机学报,2006,29(1):81-91. 被引量:17
  • 3伍之昂,罗军舟,宋爱波.基于QoS的网格资源管理[J].软件学报,2006,17(11):2264-2276. 被引量:21
  • 4BORST S, GUPTA V, A WALID. Distributed caching "algorithms for content distribution networks[A]. INFOCOM, 2010 Proceedings IEEE 2010[C]. 2010.
  • 5WEE S, APOSTOLOPOULOS J, TAN W, et al. Research and design of a mobile streaming media content delivery network[A]. IEEE In- ternational Multimedia Conference and Expo (ICME)[C]. Baltimore, MD, 2003.
  • 6HUANG Y, TOM F, et al. Challenges, design and analysis of a large-scale P2P-vod system[A]. Proceedings of the ACM SIG- COMM[C]. 2008.
  • 7YU H L, ZHENG D D, et al. Understanding user behavior in large-scale video-on-demand systems[A]. ACM SiGOPS Operating System Review[C]. 2006.
  • 8K. HUA, D. TRAN, R. VILLAFANE. Caching multicast protocol for on-demand video delivery[A]. Proceedings of S&T/SPIE Conference on Multimedia Computing and Networking (MMCN)[C]. Citeseer, 2000.
  • 9ZHONG J W, HE Z C, et al. Router caching for video streaming sys- tems[A]. Proceedings of USENIX Conference on File and Storage Technologies[C]. 2010.
  • 10R. AHLSWEDE, CAI N, LI S Y. Network information flow[J]. IEEE Trans Information Theory, 2000, 46(4): 1204-1216.

共引文献42

同被引文献102

引证文献16

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部