期刊文献+

一类标准矩形网络节点间最短路径的求解方法 被引量:6

A kind of solving method for the shortest path between standard rectangular network nodes
原文传递
导出
摘要 针对常见的交通道路最短路径问题,提出标准矩形网络的概念,分析其节点间最短路径的性质,并在此基础上给出一种新颖的最短路径求解算法.该算法利用标准矩形网络的几何性质,简化了搜索方向和步长的判断,同时指出常见的交通道路网络一般均可以整体或部分化为标准矩形网络.与常见的求取最短路径的Dijkstra、Floyd、ACO、A*等算法进行仿真实验比较,实验结果表明,对于大规模标准矩形道路网络,所提出算法具有更好的寻优精度、稳定性和寻优速度. In view of the shortest path problem of the common traffic road, the standard rectangular network concept is proposed, the properties of the shortest path between nodes are analyzed, and a novel shortest path algorithm based on the standard rectangular network(SRNSP) is presented. By using the geometric properties of the standard rectangular network,the search direction and step judgment are simplified. Meanwhile, it is pointed out that some or even all of the common traffic road networks can be converted into standard rectangular networks. Compared with the common Dijkstra, Floyd,ACO and A* algorithms for solving the shortest path problem, the experiment results show that the proposed algorithm has better optimization accuracy, stability and searching speed for the large-scale standard rectangular road network.
出处 《控制与决策》 EI CSCD 北大核心 2016年第4期623-628,共6页 Control and Decision
基金 国家自然科学基金项目(61403174)
关键词 最短路径 标准矩形网络 交通道路 搜索方向 shortest path standard rectangular network traffic road search direction
  • 相关文献

参考文献12

  • 1Yu F, Li Y J, Wu T J. A temporal ant colony optimization approach to the shortest path problem in dynamic scale-free networks[J]. Physica A: Statistical Mechanics and its Applications, 2010, 389(3): 629-636.
  • 2Du W B, Wu Z X, Cai K Q. Effective usage of shortest paths promotes transportation efficiency on scale-free networks[J]. Physica A: Statistical Mechanics and its Applications, 2013, 392(17): 3505-3512.
  • 3L′opez D, Lozano A. Techniques in multimodal shortest path in public transport systems[J]. Transportation Research Procedia, 2014, 3(1): 886-894.
  • 4Han D H, Kim Y D, Lee J Y. Multiple-criterion shortest path algorithms for global path planning of unmanned combat vehicles[J]. Computers & Industrial Engineering, 2014, 71(1): 57-69.
  • 5Duque D, Lozano L, Medaglia A L. An exact method for the biobjective shortest path problem for large-scale road networks[J]. European J of Operational Research, 2015, 242(3): 788-797.
  • 6Liu L Z, Yang J H, Mu H B, et al. Exact algorithms for multi-criteria multi-modal shortest path with transfer delaying and arriving time-window in urban transit network[J]. Applied Mathematical Modelling, 2014, 38(9): 2613-2629.
  • 7Dijkstra E W. A note on two problems in connexion with graphs[J]. Numerische Mathematik, 1959, 1(1): 269-271.
  • 8Floyd R W. Algorithm 97: Shortest path[J]. Communications of the ACM, 1962, 5(6): 345.
  • 9Hart P E, Nilsson N J, Raphael B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Trans on Systems Science and Cybernetics, 1968, 4(2): 100-107.
  • 10Colorni A, Dorigo M, Maniezzo V. Distributed optimization by ant colonies[C]. Proc of the 1st European Conf on Artificial Life. Paris: Elsevier Publishing, 1991, 142: 134-142.

同被引文献71

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部