摘要
对含有模型非线性不确定性和外部扰动的多Euler-Lagrange系统的分布式协调包含控制问题进行研究.考虑通讯拓扑为有向图,所有领航者均为动态,且各智能体间相对速度信息不可测情况.首先,选取相对速度作为辅助变量,引入低通滤波器进行估计;然后,采用神经网络方法逼近并补偿非线性不确定性,提出一种分布式自适应包含控制律,并应用Lyapunov稳定性理论证明闭环系统的包含误差一致最终有界;最后,通过仿真算例验证了所提出的控制律的有效性.
The problem of distributed coordinated containment control of multiple Euler-Lagrange systems in presence of nonlinear model uncertainties and external disturbances is investigated. The communication topology is a directed graph,the leaders are dynamic and the relative velocity information between agents is unmeasured. Firstly, the relative velocities are chosen as the auxiliary variables and estimate the auxiliary variables through the low-pass filters. Then, the neuralnetwork method is used to approximate and compensate the nonlinear uncertainties of the systems, and the distributed adaptive containment algorithm is proposed. Based on the Lyapunov stability theory, it is proved that the containment errors between leaders and followers are uniformly ultimately bounded. Finally, a simulation example is presented to illustrate the effectiveness of the proposed control method.
出处
《控制与决策》
EI
CSCD
北大核心
2016年第4期693-700,共8页
Control and Decision
基金
国家自然科学基金项目(61304005
61174200)
高等学校博士学科点专项科研基金项目(20102302110031)