期刊文献+

以低碳为目标的集装箱拖车运输问题及其时间窗离散化算法 被引量:4

Container drayage transportation problem with objective of low carbons and its time window discretization based solution method
原文传递
导出
摘要 研究以低碳为目标的集装箱拖车运输问题.该问题需同时调度隐含的运输资源和具有双重时间窗限制的运输任务.基于扩展的确定的活动在顶点上(DAOV)的图建立该问题的具有双时间窗约束的混合整数非线性规划模型,设计一个基于时间窗离散化的求解算法,并将该模型转化为纯整数线性规划模型.实验结果表明,所提出的方法有很好的求解速度和精度,与给定车辆行驶速度情形的对比进一步验证了所提出模型的有效性. A container drayage transportation problem with the objective of low carbons is explored. This problem considers both the implicitly required repositioning of transportation resources and the transportation tasks with double time window constraints. Then, this problem is formulated as a mixed integer nonlinear programming model with two time window constraints based on an extended determined-activities-on-vertex(DAOV) graph. A time window discretization based method is designed, and the model is transferred to a pure integer linear programming model. Results of experiments show that the precision and speed of this solution method is acceptable. The comparison with the problems in which speeds are given validates the effectiveness of the proposed model.
出处 《控制与决策》 EI CSCD 北大核心 2016年第4期717-722,共6页 Control and Decision
基金 国家杰出青年科学基金项目(71325002 61225012) 国家自然科学基金项目(71471034 71071028 71001019 71501034) 中国博士后科学基金项目(2012M520642) 中央高校基本科研业务费专项基金项目(N140405003 N120404016) 流程工业综合自动化国家重点实验室基础科研业务费项目(2013ZCX11) 中国科学院沈阳自动化研究所网络化控制系统重点实验室项目(WLHKZ2014008)
关键词 碳排放 集装箱 拖车运输 确定的活动在顶点上的图 离散化算法 carbon emission container drayage transportation determined-activities-on-vertex graph discretization based method
  • 相关文献

参考文献1

二级参考文献22

  • 1Lin C K Y. A cooperative strategy for a vehicle routing prob- lem with pickup and delivery time windows. Computers and Industrial Engineering, 2008, 55(4): 766-782.
  • 2Cornillier F, Laporte G, Boctor F F, Renaud J. The petrol station replenishment problem with time windows. Comput- ers and Operations Research, 2009, 36(3): 919-935.
  • 3Agarwal R, Ergun O. Ship scheduling and network design for cargo routing in liner shipping. Transportation Science, 2008, 42(2): 175-196.
  • 4Doerner K F, Gronalt M, Hartl R F, Kiechle G, Reimann M. Exact and heuristic algorithms for the vehicle routing prob- lem with multiple interdependent time windows. Computers and Operations Research, 2008, 35(9): 3034-3048.
  • 5Bredstrom D, Ronnqvist M. Combined vehicle routing and scheduling with temporal precedence and synchronization constraints. European Journal of Operational Research, 2008, 191(1): 19-31.
  • 6Tsang K S, Hung W T, Cheung C S. Emissions and fuel con- sumption of a Euro 4 car operating along different routes in Hong Kong. Transportation Research, Part D: Transport and Environment, 2011, 16(5): 415-422.
  • 7Ahn K, Rakha H, Trani A, Van Aerde M. Estimating vehi- cle fuel consumption and emissions based on instantaneous speed and acceleration levels. Journal of Transportation En- gineering, 2002, 128(2): 182-190.
  • 8Yu L, Zhang X A, Qiao F X, Qi Y. Genetic algorithm-based approach to develop driving schedules to evaluate green- house gas emissions from light-duty vehicles. Transportation Research Record. 2010. 2191:166-173.
  • 9Figliozzi M. Vehicle routing problem for emissions minimiza- tion. Transportation Research Record, 2010, 2197:1-7.
  • 10Bektas T, Laporte G. The pollution-routing problem. Trans- portation Research Part B: Methodological, 2011, 45(8): 1232-1250.

共引文献19

同被引文献39

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部