期刊文献+

保持拓扑连通的多智能体网络有限时间聚集控制 被引量:3

Finite-time rendezvous control of multi-agent networks with preserving topology connectivity
原文传递
导出
摘要 针对个体动态为二阶积分器的多智能体网络,研究有限时间聚集控制问题,采用势能函数法和变结构控制思想设计分布式非光滑有界控制协议.在网络初始能量有限的前提下,得出该非线性耦合网络拓扑始终保持连通的结论.基于不变集原理和Lyapunov函数的二阶集值李导数信息,进行有限时间稳定性分析,得出在选取合适牵制权值的情况下,网络可实现保持拓扑连通的有限时间聚集的控制策略.最后通过仿真实例验证了理论方案的有效性. The finite-time rendezvous control problem is investigated for multi-agent networks where the dynamic of agents is modeled as a second order integrator, the distributed non-smooth bounded control protocol is proposed based on the potential function method and variable structure control idea. Furthermore, it is proved that the nonlinear coupling network can keep connected with its finite initial power. The finite-time stability analysis is made according to the information of second order set-valued Lie derivative of the Lyapunov function and the invariance principle so as to obtain the control scheme that the network can achieve finite-time rendezvous with preserving topology connectivity through choosing suitable pinned weights. Finally, the simulation example is used to illustrate the effectiveness of theoretical results.
出处 《控制与决策》 EI CSCD 北大核心 2016年第4期750-754,共5页 Control and Decision
基金 国家自然科学基金优秀青年科学基金项目(61422301) 黑龙江省杰出青年基金项目(JC2015016) 黑龙江省科学基金项目(QC2013C066) 黑龙江省普通高等学校青年学术骨干支持计划项目(1254G004)
关键词 保持拓扑连通 有限时间控制 聚集控制 非光滑分析 preserving topology connectivity finite-time control rendezvous control non-smooth analysis
  • 相关文献

参考文献19

  • 1Ando H, Suzuki I, Yamashita M. Formation and agreement problems for synchronous mobile robots with limited visibility[C]. Proc of IEEE Int Symposium on Intelligent Control. Monterey: IEEE Press, 1995: 453-460.
  • 2Dimarogonas D V, Kyriakopoulos K J. On the rendezvous problem for multiple nonholonomic agents[J]. IEEE Trans on Automatic Control, 2007, 52(5): 916-922.
  • 3Martinez S, Bullo F, Cortes Jetal. On synchronous robotic networks, Part II: Time complexity of rendezvous and deployment algorithms[J]. IEEE Trans on Automatic Control, 2007, 52(12): 2214-2226.
  • 4Li D, Spong M W. Stable flocking of multiple inertial agents on balanced graphs[J]. IEEE Trans on Automatic Control, 2007, 52(8): 1469-1475.
  • 5Litus Y, Zebrowski P, Vaughan R T. A distributed heuristic for energy efficient multirobot multiplace rendezvous[J]. IEEE Trans on Robotics, 2009, 25(1): 130-135.
  • 6Ando H, Oasa Y, Suzuki Ietal. Distributed memoryless point convergence algorithm for mobile robots with limited visibility[J]. IEEE Trans on Robotics and Automation, 1999, 15(5): 818-828.
  • 7Ji M, Egerstedt M. Distributed coordination control of multi-agent systems while preserving connectedness[J]. IEEE Trans on Robotics, 2007, 23(4): 693-703.
  • 8Zavlanos M M, Jadbabaie A, Pappas G J. Flocking while preserving network connectivity[C]. Proc of the 46th IEEE Conf on Decision and Control. New Orleans: IEEE Press, 2007: 2919-2924.
  • 9Su H,Wang X, Chen G. A connectivity-preserving flocking algorithm for multi-agent systems based only on position measurements[J]. Int J of Control, 2009, 82(7): 1334-1343.
  • 10Su H, Wang X, Chen G. Rendezvous of multiple mobile agents with preserved network connectivity[J]. Systems and Control Letters, 2010, 59(5): 313-322.

同被引文献31

  • 1李艳东,朱玲,郭媛,于颖.基于径向基函数神经网络的移动机器人多变量固定时间编队控制[J].信息与控制,2019,48(6):649-657. 被引量:14
  • 2Ando H,Suzuki I,Yamashita M.Formation and agreement problems for synchronous mobile robots with limited visibility[C].Monterey:IEEE International Symposium on Intelligent Control,1995:453-460.
  • 3Shi G,Hong Y G.Global target aggregation and state agreement of nonlinear multi-agent systems with switching topologies[J].Automatica,2009,45(5):1165-1175.
  • 4Cortés J,Martínez S,Bullo F.Robust rendezvous for mobile autonomous agents via proximity graphs in arbitrary dimensions[J].IEEE Transactions on Automatic Control,2006,51(8):1289-1298.
  • 5Dimarogonas D V,Kyriakopoulos K J.On the rendezvous problem for multiple nonholonomic agents[J].IEEE Transactions on Automatic Control,2007,52(5):916-922.
  • 6Hui Q.Finite-time rendezvous algorithms for mobile autonomous agents[J].IEEE Transactions on Automatic Control,2011,56(1):201-211.
  • 7Bhat S P,Bernstein D S.Finite-time stability of continuous autonomous systems[J].SIAM Journal of Control and Optimization,2000,38(3):751-766.
  • 8Zavlanos M M,Jadbabaie A,Pappas G J.Flocking while preserving network connectivity[C].New Orleans:The 46th IEEE Conf on Decision and Control,2007:2919-2924.
  • 9Su H,Wang X,Chen G.A connectivity-preserving flocking algorithm for multi-agent systems based only on position measurements[J].International Journal of Control,2009,82(7):1334-1343.
  • 10Gustavi T,Dimarogonas D.V,Egerstedt M,et al.Sufficient conditions for connectivity maintenance and rendezvous in leader-follower networks[J].Automatic,2010,46(1):133-139.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部