摘要
针对个体动态为二阶积分器的多智能体网络,研究有限时间聚集控制问题,采用势能函数法和变结构控制思想设计分布式非光滑有界控制协议.在网络初始能量有限的前提下,得出该非线性耦合网络拓扑始终保持连通的结论.基于不变集原理和Lyapunov函数的二阶集值李导数信息,进行有限时间稳定性分析,得出在选取合适牵制权值的情况下,网络可实现保持拓扑连通的有限时间聚集的控制策略.最后通过仿真实例验证了理论方案的有效性.
The finite-time rendezvous control problem is investigated for multi-agent networks where the dynamic of agents is modeled as a second order integrator, the distributed non-smooth bounded control protocol is proposed based on the potential function method and variable structure control idea. Furthermore, it is proved that the nonlinear coupling network can keep connected with its finite initial power. The finite-time stability analysis is made according to the information of second order set-valued Lie derivative of the Lyapunov function and the invariance principle so as to obtain the control scheme that the network can achieve finite-time rendezvous with preserving topology connectivity through choosing suitable pinned weights. Finally, the simulation example is used to illustrate the effectiveness of theoretical results.
出处
《控制与决策》
EI
CSCD
北大核心
2016年第4期750-754,共5页
Control and Decision
基金
国家自然科学基金优秀青年科学基金项目(61422301)
黑龙江省杰出青年基金项目(JC2015016)
黑龙江省科学基金项目(QC2013C066)
黑龙江省普通高等学校青年学术骨干支持计划项目(1254G004)
关键词
保持拓扑连通
有限时间控制
聚集控制
非光滑分析
preserving topology connectivity
finite-time control
rendezvous control
non-smooth analysis