期刊文献+

Cellular functions of MLL/SET-family histone H3 lysine 4 methyltransferase components

Cellular functions of MLL/SET-family histone H3 lysine 4 methyltransferase components
原文传递
导出
摘要 The MLL/SET family of histone H3 lysine 4 methyltransferases form enzyme complexes with core subunits ASH2L, WDR5, RbBP5, and DPY-30 (often abbreviated WRAD), and are responsible for global histone H3 iysine 4 methylation, a hallmark of actively transcribed chromatin in mammalian cells. Accordingly, the function of these proteins is required for a wide variety of processes including stem cell differentiation, cell growth and division, body segmentation, and hematopoiesis. While most work on MLL-WRAD has focused on the function this core complex in histone methylation, recent studies indicate that MLL-WRAD proteins interact with a variety of other proteins and IncRNAs and can localize to cellular organelles beyond the nucleus. In this review, we focus on the recently described activities and interacting partners of MLL-WRAD both inside and outside the nucleus. The MLL/SET family of histone H3 lysine 4 methyltransferases form enzyme complexes with core subunits ASH2L, WDR5, RbBP5, and DPY-30 (often abbreviated WRAD), and are responsible for global histone H3 iysine 4 methylation, a hallmark of actively transcribed chromatin in mammalian cells. Accordingly, the function of these proteins is required for a wide variety of processes including stem cell differentiation, cell growth and division, body segmentation, and hematopoiesis. While most work on MLL-WRAD has focused on the function this core complex in histone methylation, recent studies indicate that MLL-WRAD proteins interact with a variety of other proteins and IncRNAs and can localize to cellular organelles beyond the nucleus. In this review, we focus on the recently described activities and interacting partners of MLL-WRAD both inside and outside the nucleus.
出处 《Frontiers in Biology》 CAS CSCD 2016年第1期10-18,共9页 生物学前沿(英文版)
关键词 H3K4MT histone H3 lysine 4 methyltransferase WDR5 RbBP5 ASH2L DPY-30 SET MLL WRAD Oct4 MYC cell biology protein lysine methylation H3K4MT, histone H3 lysine 4 methyltransferase, WDR5, RbBP5, ASH2L, DPY-30, SET, MLL, WRAD, Oct4,MYC, cell biology, protein lysine methylation
  • 相关文献

参考文献83

  • 1Avraham H, Park S Y, Schinkmann K, Avraham S (2000). RAFTK/ Pyk2-mediated cellular signalling. Cell Signal, 12(3): 123–133.
  • 2Avraham S, London R, Fu Y, Ota S, Hiregowdara D, Li J, Jiang S, Pasztor L M, White R A, Groopman J E, et al (1995). Identification and characterization of a novel related adhesion focal tyrosine kinase (RAFTK) from megakaryocytes and brain. J Biol Chem, 270(46): 27742–27751.
  • 3Bae Y H, Mui K L, Hsu B Y, Liu S L, Cretu A, Razinia Z, Xu T, Puré E, Assoian R K (2014). A FAK-Cas-Rac-lamellipodin signaling module transduces extracellular matrix stiffness into mechanosensitive cell cycling. Sci Signal, 7(330): ra57.
  • 4Barsukov I L, Prescot A, Bate N, Patel B, Floyd D N, Bhanji N, Bagshaw C R, Letinic K, Di Paolo G, De Camilli P, Roberts G C, Critchley D R (2003). Phosphatidylinositol phosphate kinase type 1gamma and beta1-integrin cytoplasmic domain bind to the same region in the talin FERM domain. J Biol Chem, 278(33): 31202–31209.
  • 5Bayer A L, Heidkamp M C, Patel N, Porter M J, Engman S J, Samarel A M (2002). PYK2 expression and phosphorylation increases in pressure overload-induced left ventricular hypertrophy. Am J Physiol Heart Circ Physiol, 283(2): H695–H706.
  • 6Beggs H E, Schahin-Reed D, Zang K, Goebbels S, Nave K A, Gorski J, Jones K R, Sretavan D, Reichardt L F (2003). FAK deficiency in cells contributing to the basal lamina results in cortical abnormalities resembling congenital muscular dystrophies. Neuron, 40(3): 501–514.
  • 7Buckbinder L, Crawford D T, Qi H, Ke H Z, Olson L M, Long K R, Bonnette P C, Baumann A P, Hambor J E, Grasser WA, Pan L C, Owen T A, Luzzio M J, Hulford C A, Gebhard D F, Paralkar V M, Simmons H A, Kath J C, Roberts WG, Smock S L, Guzman-Perez A, Brown T A, Li M (2007). Proline-rich tyrosine kinase 2 regulates osteoprogenitor cells and bone formation, and offers an anabolic treatment approach for osteoporosis. Proc Natl Acad Sci USA, 104(25): 10619–10624.
  • 8Cai X, Lietha D, Ceccarelli D F, Karginov A V, Rajfur Z, Jacobson K, Hahn K M, Eck M J, Schaller M D (2008). Spatial and temporal regulation of focal adhesion kinase activity in living cells. Mol Cell Biol, 28(1): 201–214.
  • 9Ceccarelli D F, Song H K, Poy F, Schaller M D, Eck MJ (2006). Crystal structure of the FERM domain of focal adhesion kinase. J Biol Chem, 281(1): 252–259.
  • 10Chen J, Kubalak S W, Chien K R (1998). Ventricular muscle-restricted targeting of the RXRalpha gene reveals a non-cell-autonomous requirement in cardiac chamber morphogenesis. Development, 125(10): 1943–1949.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部