期刊文献+

差异加热腔中自然对流的格子Boltzmann方法数值分析

Numerical Analysis of Free Convection in a Differentially Heated Square Cavity by Lattice Boltzmann Method
下载PDF
导出
摘要 近年来,格子Boltzmann方法已经迅速发展成为一种有效的描述流体体系运动的介观方法,并广泛地应用于能源开发和利用、环境保护、航空航天、化学工程和生命科学等领域,格子Boltzmann方法在多相流、多组分流、化学反应扩散、微尺度流动与换热、多孔介质流、非牛顿流体、磁流体等复杂流体领域有其独特的优势。从连续Boltzmann-BGK方程出发,可以推导出完整的D2Q9型格子Boltzmann模型。然后通过FORTRAN编程计算不同瑞利数下差异加热腔中自然对流的温度分布情况,模拟结果与有限体积法结果吻合的很好。 Lattice Boltzmann method has rapidly developed into a effective mesoscopic method to describe the fluid system movement. And it is widespread applied to energy exploitation and utilization, environmental protection, aerospace, chemical engineering, life science and other fields. Lattice Boltzmann method has its unique advantages on complex fluid field such as multiphase flow, multicomponent flow, chemical reaction diffusion, micro-scale flow and heat transfer, porous media flow, non-Newtonian fluid and magnetic fluid. The article proceed from the continuity Boltzmann- BGK equation to deduce the complete D2Q9 type of lattice Boltzmann model. Afterward, by FORTRAN programming program to calculate the temperature distribution of free convection in differentially heated square cavity under different Rayleigh numbers. The calculation results are well consistent with the results by finite volume method.
出处 《科技通报》 北大核心 2016年第4期11-14,共4页 Bulletin of Science and Technology
基金 广东省科技计划资助项目(2011B090400518) 广东省自然科学基金资助项目(S013010013225) 广东省省级科技计划项目(2014B030301034) 深圳市战略新兴产业发展专项资金项目(JCYJ20130401161052963)
关键词 格子BOLTZMANN方法 差异加热腔 自然对流 Hermite展开 lattice Boltzmann method differentially heated square cavity free convection Hermite expansion
  • 相关文献

参考文献12

  • 1Hardy J,De Pazzis O,Pomeau Y. Molecular dynamics of aclassical lattice gas: Transport properties and time correla-tion functions[J]. Physical review A,1976,13(5):1949.
  • 2Frisch U,Hasslacher B,Pomeau Y. Lattice-gas automatafor the Navier-Stokes equation[J]. Physical review letters,1986,56(14):1505.
  • 3Lallemand P,Frisch U. Lattice Gas Models for 3D Hydro-dynamics[J]. EPL (Europhysics Letters),1986,2(4): 291.
  • 4MeNamara G R,Zanetti G. Use of the Boltzmann equationto simulate lattice automata[J]. Phys Rev Lett,1988,61:2332-2335.
  • 5Higuera F J,Succi S,Benzi R. Lattice gas dynamics withenhanced collisions[J]. EPL (Europhysics Letters),1989,9(4): 345.
  • 6Chen S,Chen H,Martnez D,et al. Lattice Boltzmann mod-el for simulation of magnetohydrodynamics[J]. Physical Re-view Letters,1991,67(27): 3776.
  • 7Qian Y H,d'Humières D,Lallemand P. Lattice BGK mod-els for Navier-Stokes equation[J]. EPL (Europhysics Let-ters),1992,17(6): 479.
  • 8Koelman J. A simple lattice Boltzmann scheme for Navier-Stokes fluid flow[J]. EPL (Europhysics Letters),1991,15(6): 603.
  • 9d'Humieres D.Generalized lattice-Boltzmann equations[J].Rarefied gas dynamics- Theory and simulations,1994:450-458.
  • 10Ladd A J C. Numerical simulations of particulate suspen-sions via a discretized Boltzmann equation. Part 1. Theo-retical foundation[J]. Journal of Fluid Mechanics,1994,271: 285-309.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部