期刊文献+

一种新型醛酮还原酶的克隆表达、性质研究以及在不对称合成(R)-CHBE中的应用

Overexpression,characterization of a novel aldo-keto reductase for asymmetric synthesis of (R)-CHBE
下载PDF
导出
摘要 为开发催化4-氯乙酰乙酸乙酯(COBE)制备(R)-4-氯-3-羟基丁酸乙酯((R)-CHBE)的新型催化剂,挖掘到了来自白色念珠菌SC5314中的一种NADPH辅酶依赖型醛酮还原酶CAK基因(cak),并将该基因在大肠杆菌中表达。将重组酶进行纯化后,测定其酶学性质,并构建了以葡萄糖为辅底物的双酶偶联辅酶再生系统,考察其不对称转化制备(R)-CHBE的能力。结果表明:CAK对多种醛酮类化合物有催化活性,其催化COBE的最适反应温度为40℃,最适p H为5。CAK在40℃下以及酸性条件中能保持较好的稳定性。Mg2+、Na+、K+对酶活有一定的激活作用,而Cu2+存在条件下酶会彻底失活。乙酸乙酯、邻苯二甲酸二丁酯对酶活的抑制作用较小。利用双酶偶联辅酶再生系统不对称转化制备(R)-CHBE。在合适的条件下,转化600 mmol/L的底物,产率达80.6%,产物对映体过量值(e.e.值)>99%。 An NADPH?dependent aldo?keto reductase ( CAK) gene from Candida albicans SC5314 was discovered for reducing 4?chloroacetoacetate ethyl ester ( COBE ) to ethyl ( R )?4?chloro?3?hydroxybutanoate ( ( R )?CHBE ) . The CAK gene was cloned and overexpressed in Escherichia coli Rosetta. The catalytic properties of purified CAK were studied. Furthermore,an enzyme?coupled coenzyme regeneration system with co?substrate glucose was constructed, and its capability of reducing COBE to ( R)?CHBE was studied. The results showed that CAK had catalytic activity for a variety of aldehydes and ketones. CAK had a maximum activity at 40℃ and pH 5. The enzyme was stable below 40℃ and under acidic conditions. Mg2+, Na+ and K+ could enhance the activity of CAK. When Cu2+ was added, no enzyme activity was detected. The inhibit effect of ethyl acetate and dibutyl?O?phthalate was relatively light. When the coenzyme regeneration system for conversion reaction was applied,the molar conversion yield reached 80?6% with 600 mmol/L COBE,and the e?e? value was over 99%.
出处 《生物加工过程》 CAS 2016年第2期33-40,共8页 Chinese Journal of Bioprocess Engineering
基金 国家重点基础研究发展计划(973计划)(2011CBA00804) 国家高技术研究发展计划(863计划)(2012AA022101) 江苏高校优势学科建设工程
关键词 醛酮还原酶 NADPH再生 蛋白纯化 酶学性质 (R)-4-氯-3-羟基丁酸乙酯 aldo-keto reductase NADPH regeneration protein purifying enzyme property (R)-4-chloro-3-hydroxybutanoic acid ethyl ester
  • 相关文献

参考文献18

  • 1DAVIES S G, LCHIHARA O. Asymmetric synthesis of ( +)-negamycin[J].Tetrahedron:Asymmetry,1996,7:1919-1922.
  • 2MIYASHITA A,YASUDA A,TAKAYA H,et al.Synthesis of 2,2′-bis ( diphenylphosphino )-1, 1′-binaphthyl ( BINAP ), anatropisomeric chiralbis ( triaryl) phosphine, and its use in therhodium ( I )-catalyzed asymmetric hydrogenation of alpha-(acylamino) acrylic acids[J].J Am Chem Soc,1980,102(27):7932-7934.
  • 3HIKICHI S,HAREAU G P J,SATO F. Efficient and practicalsynthesis of optically active 5-t-butyldimethylsiloxy-2-cyclohexen-one as a convenient chiral 2,5-cyclohexadienone synthon[J].Tetrahedron Lett,1997,38:8299-8302.
  • 4WADA M,KAWABATA H,KETAOKA M,et al.Purification andcharacterization of an aldehyde reductase from Candida magnoliae[J].J Mol Catal B:Enzymatic,1999,6:333-339.
  • 5KITA K, NAKASE K, YANASE H, et al. Purification andcharacterization of new aldehyde reductases from Sporobolomycessalmonicolor AKU4429[J].J Mol Catal B:Enzymatic,1999,6:305-313.
  • 6MATSUYAMA A, YAMAMOTO H, KOBAYASHI Y. Practicalapplication of recombinant whole-cell biocatalysts for themanufacturing of pharmaceutical intermediates such as chiralalcohols[J].Org Proc Res Develop,2002,6:558-561.
  • 7SHUMIZU S, KATAOKA M, MORISHITA M, et al. Microbialasymmetric reduction of ethyl-4-chloro-3-oxobutanoate to opticallyactive ethyl-4-chloro-3-hydroxybutanoate [J]. Biotechnol Lett,1990,12(8):593-596.
  • 8YU M A,WEI Y M,ZHAO L,et al. Bioconversion of ethyl 4-chloro-3-oxobutanoate by permeabilized fresh brewer’s yeast cellsin the presence of allyl bromide[J].J Ind Microbiol Biotechnol,2007,34:151-156.
  • 9NI Y,LI C X,WANG L J,et al.Highly stereoselective reduction ofprochiral ketones by a bacterial reductase coupled with cofactorregeneration[J].Org Biomol Chem,2011,9:5463-5468.
  • 10JING K,XU Z,LIU Y,et al.Efficient production of recombinantaldehyde reductase and its application for asymmetric reduction ofethyl 4-chloro-3-oxobutanoate to ethyl ( R )-4-chloro-3-hydroxybutanoate[J].Prep Biochem Biotechnol,2005,35:203-215.

二级参考文献27

  • 1欧志敏,金志华,吴坚平,杨立荣,岑沛霖.伴有辅酶再生过程的Saccharomyces cerevisiae B5不对称还原2’-氯-苯乙酮的催化反应动力学[J].高校化学工程学报,2005,19(4):511-517. 被引量:9
  • 2Zhou B,Gopalan A S,VanMiddlesworth F et al.Stereochemical control of yeast reductions.l.Asymmetric synthesis of L-carnitine[J].J Am Chem Soc,1983,105(18):5925-5926.
  • 3Karanewsky D S,Badia M C,Ciosek C P J et al.Phosphorus-containing inhibitors of HMG-CoA reductase.1,4-[2-(arylethyl)hydroxyphosphinyl]-3-hydroxy-butanoic acids:a new class of cell-selective inhibitors of cholesterol biosynthesis[J].J Med Chem,1990,33(11):2952-2956.
  • 4Patel R N,McMamee C G,Banerjee A et al.Stereoselective reduction of β-keto esters by Geotrichum candidum[J].Enzyme Microb Technol,1992,14(9):731-738.
  • 5Hunt J R,Carter A S,Murrell J C et al.Yeast catalysed reduction of β-keto esters (1):Factors affecting whole-cell catalytic activity and stereoselectivity[J].Biocatal Biotransform,1995,12:159-178.
  • 6Yasohara Y,Kizaki N,Hasegawa J et al.Synthesis of optically active ethyl 4-chloro-3-hydroxybutanoate by microbial reduction[J].Appl Microbiol Biotechnol,1999,51:847-851.
  • 7Saratani Y,Uheda E,Yamamoto H et al.Steroselective reduction of ethyl 4-chloro-3-oxobutanoate by fungi[J].Biosci Biotechnol Biochem,2001,65(7):1676-1679.
  • 8Shieh W R,Gopalan A S,Sih C J.Stereochemical control of yeast reductions 5.Characterization of the oxidoreductases involved in the reduction of β-keto esters[J].J Am Chem Soc,1985,107(10):2993-2994.
  • 9Yamada H,Shimizu S,Kataoka M et al.A novel NADP-dependent aldehyde reductase catalyzing asymmetric reduction of β-keto esters,from Sporobolomyces salmonicolor:purification and characterization[J].FEMS Microbiol Lett,1990,70(1):45-48.
  • 10Kataoka M,Skai H,Morikawa T et al.Characterization of aldehyde reductase of Sporobolomyces salmonicolor[J].Biochim Biophys Acta,1992,1122(1):57-62.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部