期刊文献+

基于多分辨率分析的1/f类噪声滤波器设计 被引量:1

Filter Design of 1/f Type Noise Based on Multiresolution Analysis
下载PDF
导出
摘要 针对 1 /f类噪声的非平稳、自相似、长程相关以及幂指数型的功率谱等特性 ,根据小波理论以及多分辨率分析思想给出了 1 /f类噪声的多分辨率分解的表示方法 ,在此基础上建立了其小波模型并设计出相应的白化滤波器 .运用基于小波的阀值限定的方法进行消噪 ,以干涉式光纤陀螺系统中由于偏置不稳定性造成输出信号中所存在的 1 /f类噪声为研究对象进行仿真分析 .结果表明 。 The characteristics of non-stationary, self-similarity, long-term correlation and 1/f type power spectrum of 1/f noise were analyzed. The multiresolution decomposition method of 1/f type noise based on wavelet theory and multiresolution analysis idea was presented. Its wavelet-based mode was given and the corresponding wavelet-based whitening filter was designed. The denoised method of signal's wavelet coefficient threshold using the principle of Sten's unbiased risk estimation was proposed. The research object is the bias instability noise of the output signal of interferometric fiber optic gyro. The simulation reveals the effectiveness of the proposed scheme.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2002年第7期1037-1040,共4页 Journal of Shanghai Jiaotong University
基金 国防预研重点项目 ( 9.2 .6 .2 )
关键词 1/f类噪声 设计 多分辨率分析 长程相关性 白化滤波器 小波模型 噪声消除 f noise multiresolution analysis long-term correlation whitening filter
  • 相关文献

参考文献7

  • 1[1]Wornell G W. Wavelet-based representations for the 1/f family of fractal process [J]. Proceedings of IEEE, 1993, 81(10):1428-1450.
  • 2[2]Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693.
  • 3[3]Daubechies I. Orthonormal bases of compactly supported wavelets [J]. Communications on Pure and Applied Mathematics, 1988, 41(12):909-996.
  • 4[4]Ferrante G, Adorno P D. A wavelet ananlysis of 1/f and white noise in microwave transistors [J]. Micriekectronics Reliability, 2001, 41:99-104.
  • 5[5]Hirchoren G A, Attellis C E. Estimation of fractal signals using wavelets and filter banks [J]. IEEE Transactions on Signal Processing, 1998, 46(6):1624-1630.
  • 6[6]Donoho D L, Johnstone L M. Adapting to unknown smoothness via wavelet shrinkage [J]. Journal of the American Statistical Association, 1995, 90(12): 1200-1224.
  • 7[7]Mandelbrot M. The fractal geometry of nature [M]. New York: W H Freeman, 1982. 232-246.

同被引文献10

  • 1高亚楠,陈家斌.基于小波分析的光纤陀螺信号处理[J].火力与指挥控制,2005,30(5):35-37. 被引量:3
  • 2[1]Bialas B M.Stochastic and Dynamic Modeling of Fiber Gyros[R].2292:332-338.
  • 3[2]Ralph B.Morrow,Dwayne Hechman W.High Precision IFOG Insertion into the Strategic Submarine Navigation System[J]1IEEE 1998:332-338.
  • 4[4]Donoho D L.De-Noising by Soft-Thresholding.[J].IEEE Trans on Information Theory,1995,41 (3):613-627.
  • 5[6]Guo JiChang,The De-Noising of Gyro Signals by Bi-Orthogonal Wavelet Transform[J].IEEE.Trans.on Signal Processing,43.
  • 6[7]Phoony,S M,A New Class of Two-Channel Bi-Orthogonal Filter Banks and Wavelets[J].IEEE.Trans.on Signal Processing.1995,43:649.
  • 7[8]Donoho D,De-Noising by Soft-Thresholding[J].IEEE.Trans.on Information Theory,1995,41(5):613.
  • 8[9]Guo X Z,Gyro Theory of Inertial Navigation Systems,1996.
  • 9[10]Xie R S,Sun E,Strapdown Gyro Signal Filtering Method Based on Wavelets[J].Journal of Harbin Univ.of Eng ~01.2,24.2001.
  • 10张传斌,王学孝,邓正隆.基于小波分析的FOG中1/f^γ噪声的去除方法研究[J].系统工程与电子技术,2002,24(4):64-66. 被引量:7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部