期刊文献+

A Note on Homoclinic or Heteroclinic Orbits for the Generalized Hénon Map

A Note on Homoclinic or Heteroclinic Orbits for the Generalized Hénon Map
原文传递
导出
摘要 An important problem in a given dynamical system is to determine the existence of a homoclinic orbit. We improve the results of Qin and Xiao [Nonlinearity, 20 (2007), 2305-2317], who present some sufficient conditions for the existence of a homoclinic/heteroclinic orbit for the generalized H@non map. Moreover, an algorithm is presented to locate these homoclinic orbits. An important problem in a given dynamical system is to determine the existence of a homoclinic orbit. We improve the results of Qin and Xiao [Nonlinearity, 20 (2007), 2305-2317], who present some sufficient conditions for the existence of a homoclinic/heteroclinic orbit for the generalized H@non map. Moreover, an algorithm is presented to locate these homoclinic orbits.
作者 Yong-guo SHI
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2016年第2期283-288,共6页 应用数学学报(英文版)
基金 Supported by NSFC(11101295,11301256) SCED(13ZB0005,14TD0026)
关键词 reversible planar map homoclinic orbit heteroclinic orbit generalized Henon map reversible planar map homoclinic orbit heteroclinic orbit generalized Henon map
  • 相关文献

参考文献7

  • 1Bergamin, J.M., Bountis, T., Jung, C. A method for locating symmetric homoclinic orbits using symbolic dynamics. J. Phys. A: Math. Gen., 33:8059 8070 (2000).
  • 2Bergamin, J.M., Bountis, T., Vrahatis, M.N. Homoclinic orbits of invertible maps. Nonlinearity, 15: 1603 1619 (2002).
  • 3Beyn, W.J., Kleinkauf, J.M. The numerical computation of homoclinic orbits for maps. SIAM J. Numer. AnaL, 34:1207-1236 (1997).
  • 4Devaney, Robert L. Homoclinic bifurcations and the area-conserving henon mapping. J. Differ. Equations, 51:254-266 (1984).
  • 5Fontich, E. Transversal homoclinic points of a class of conservative diffeomorphisms. J. Differ. Equations, 87:1-27 (1990).
  • 6Shi, Y.G., Chen, L. Reversible maps and their symmetry lines. Commun. Nonlinear Sci. Numer. Simulat., 16:363-371 (2011).
  • 7Qin, W.X., Xiao X. Homoclinic orbits and localized solutions in nonlinear SchrSdinger lattices. Nonlin- earity, 20:2305-2317 (2007).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部