期刊文献+

DGMRES Method Augmented with Eigenvectors for Computing the Drazin-inverse Solution of Singular Linear Systems

DGMRES Method Augmented with Eigenvectors for Computing the Drazin-inverse Solution of Singular Linear Systems
原文传递
导出
摘要 The DGMRES method for solving Drazin-inverse solution of singular linear systems is generally used with restarting. But the restarting often slows down the convergence and DGMRES often stagnates. We show that adding some eigenvectors to the subspace can improve the convergence just like the method proposed by R. Morgan in [R. Morgan, A restarted GMRES method augmented with eigenvectors, SIAM J. Matrix Anal App1., 16: 1154-1171, 1995. We derive the implementation of this method and present some numerical examples to show the advantages of this method. The DGMRES method for solving Drazin-inverse solution of singular linear systems is generally used with restarting. But the restarting often slows down the convergence and DGMRES often stagnates. We show that adding some eigenvectors to the subspace can improve the convergence just like the method proposed by R. Morgan in [R. Morgan, A restarted GMRES method augmented with eigenvectors, SIAM J. Matrix Anal App1., 16: 1154-1171, 1995. We derive the implementation of this method and present some numerical examples to show the advantages of this method.
作者 Bin MENG
机构地区 College of Science
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2016年第2期549-558,共10页 应用数学学报(英文版)
基金 Supported by the National Natural Science Foundation of China(No.11171151) Natural Science Foundation of Jiangsu Province of China(No.BK2011720)
关键词 Drazin-inverse DGMRES Krylov subspace iterative method EIGENVECTOR Drazin-inverse DGMRES Krylov subspace iterative method eigenvector
  • 相关文献

参考文献11

  • 1Morgan, R. A restarted GMRES method augmented with eigenvectors. SIAM J. Matrix Anal. Appl., 16: 1154-1171 (1995).
  • 2Sidi, A. A unified approach to Krylov subspace methods for the Drazin-inverse solution of singular nonsys- mmetric linear systems. Lin. Alg. Appl., 298:99-113 (1999).
  • 3Sidi, A. DGMRES: a GMRES-type algorithm for Drazin-inverse solution of singular nonsysmmetric linear systems. Lin. Alg. Appl., 335:189-204 (2001).
  • 4Sidi, A., et al. Orthogonal polynomials and semi-iterative methods for the Drazin-inverse solution of singular linear systems. Numer. Math., 93(3): 563-581 (2003).
  • 5Sidi, A., et al. A Bi-CG type iterative method for Drazin-inverse solution of singular inconsistent non- symmetric linear systems of arbitrary index. Proceedings of the Eleventh Haifa Matrix Theory Conference (1999), Electron. J. Linear Algebra 6 (1999/00), 72-94.
  • 6Zhang, N. A note on preconditioned GMRES for solving singular linear systems. BIT, 50(1): 207-220 (2010).
  • 7Zhang, N, Wei, Y. On the convergence of general stationary iterative methods for range-Hermitian singular linear systems. Numer. Linear Algebra App1., 17(1): 139-154 (2010).
  • 8Zhou, J., Wei, Y. Stagnation analysis of DGMRES. Appl. Math. Comp., 151:27-39 (2004).
  • 9Zhou, J., Wei, Y. The analysis of restart DGMRES for solving singular linear systems. Appl. Math Comp., 176:293-301 (2006).
  • 10Zhou, J, Wei, H. A simpler DGMRES. Appl. Math. Comput., 217(1): 124-129 (2010).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部