期刊文献+

Pseudo-gap phase and duality in a holographic fermionic system with dipole coupling on Q-lattice

Pseudo-gap phase and duality in a holographic fermionic system with dipole coupling on Q-lattice
原文传递
导出
摘要 We classify the different phases by the “pole-zero mechanism” for a holographic fermionic system which contains a dipole coupling with strength p on a Q-lattice background. A complete phase structure in p space can be depicted in terms of Fermi liquid, non-Fermi liquid, Mott phase and pseudo-gap phase. In particular, we find that in general the region of the pseudo-gap phase in p space is suppressed when the Q-lattice background is dual to a deep insulating phase, while for an anisotropic background, we have an anisotropic region for the pseudo-gap phase in p space as well. In addition, we find that the duality between zeros and poles always exists regardless of whether or not the model is isotropic. We classify the different phases by the “pole-zero mechanism” for a holographic fermionic system which contains a dipole coupling with strength p on a Q-lattice background. A complete phase structure in p space can be depicted in terms of Fermi liquid, non-Fermi liquid, Mott phase and pseudo-gap phase. In particular, we find that in general the region of the pseudo-gap phase in p space is suppressed when the Q-lattice background is dual to a deep insulating phase, while for an anisotropic background, we have an anisotropic region for the pseudo-gap phase in p space as well. In addition, we find that the duality between zeros and poles always exists regardless of whether or not the model is isotropic.
出处 《Chinese Physics C》 SCIE CAS CSCD 2016年第4期28-33,共6页 中国物理C(英文版)
基金 Supported by National Natural Science Foundation of China(11275208,11305018,11178002) Jiangxi Young Scientists(Jing-GangStar)Progran 555 Talent Project of Jiangxi Province,Liaoning Excellent Talents in University(LJQ2014123)
关键词 holographic anisotropic classify dipole duality insulating correspondence Fermi suppressed regardless holographic anisotropic classify dipole duality insulating correspondence Fermi suppressed regardless
  • 相关文献

参考文献41

  • 1J. M. Maldacena, Adv. Theor. Math. Phys., 2:231 (1998) lint. J. Theor. Phys., 38:1113 (1999)].
  • 2S. S. Gubser, I. IR. Klebanov, and A. M. Polyakov, Nucl. Phys. B, 636:99 (2002).
  • 3E. Witten, Adv. Theor. Math. Phys., 2:253 (1998).
  • 4S. S. Lee, Phys. Rev. D, ~r9:086006 (2009).
  • 5H. Liu, J. McGreevy, and D. Vegh, Phys. Rev. D, 83:065029 (2011).
  • 6T. Faulkner, H. Liu, J. McGreevy et al, Phys. Rev. D, 83: 125002, (2011).
  • 7M. Cubrovic, J. Zaanen, and K. Schalm, Science, 325:439 (2009).
  • 8M. Edalati, R. G. Leigh, and P. W. Phillips, Phys. Rev. Lett.,106:091602 (2011).
  • 9M. Edalati, R. G. Leigh, K. W. Lo, et al, Phys. Rev. D, 83: 046012 (2011).
  • 10J. Alsup, E. Papantonopoulos, G. Siopsis, et al, Phys. Rev. D, 90:126013 (2014).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部